From Thompson sampling to Ensemble sampling

Posterior sampling beyond conjugacy

Yingru Li

https://richardli.xyz/

Content based on the invited presentation at Informs Optimiztion Society Conference, March, 2024 Sequential Decision-making under Uncertainty

Existing solutions and their limitations

Sequential decision-making

Figure: An Agent (online decision algorithm) interacts with the environment (system).

- ► Adaptation: At time *t*, the agent extracts information from history data $D_{t-1} = (x_1, y_1, \dots, x_{t-1}, y_{t-1})$. E.g., estimate model $\hat{\theta}$ for unknown system.
- **Decision**: Then, the agent selects action x_t accordingly and observes the outcome y_t .

Sequential decision-making

Figure: An Agent (online decision algorithm) interacts with the environment (system).

▶ Goal: Select actions $(x_t)_{t \ge 1}$ to maximize total expected future reward $\mathbb{E}[\sum_t r(y_t))]$.

Exploration-Exploitation tradeoff.

May require balancing long term & immediate rewards.

A simple setup: Bernoulli bandits

(c) Action 3: $\theta_3^* = 0.7$

- 3 actions with mean rewards $\theta^* = \{\theta_1^* = 0.6, \theta_2^* = 0.4, \theta_3^* = 0.7\}$, unknown to the Agent but fixed.
- Each time t, an action $x_t = k$ is selected and the observation

 $y_t \sim \text{Bernoulli}(\theta_k^*)$

is revealed, resulting the reward $r_t = y_t$.

- $\theta^* = \{\theta_1^* = 0.6, \theta_2^* = 0.4, \theta_3^* = 0.7\}$ unknown.
- The agent begin with an independent uniform prior belief over each θ^{*}_k.
- The agent's beliefs in any given time period about these mean rewards can be expressed in terms of posterior distributions.
 - Posterior \propto Prior \times Data likelihoods
 - More Data \Rightarrow Posterior concentrates!
 - Less Data \Rightarrow Posterior spreads!

Epistemic Uncertainty due to insufficient data.

Figure: Posterior p.d.f. over mean rewards after the agent tries actions 1 and 2 one thousand times each, action 3 three times, receives cumulative rewards of 600, 400, and 1.

- Greedy algorithm (maximize expected mean reward with current belief) will always select action 1.
- Under current belief: Reasonable to avoid action 2, since it is extremely unlikely θ^{*}₂ > θ^{*}₁.
- ▶ Because of high uncertainty in θ_3^* , there is some chance $\theta_3^* > \theta_1^*$. In the long run, the agent should try action 3.

Greedy algorithm fails to account for uncertainty information in θ_3^* , causing suboptimal decision.

Figure: Posterior p.d.f. over mean rewards after the agent tries actions 1 and 2 one thousand times each, action 3 three times, receives cumulative rewards of 600, 400, and 1. Ground truth

$$\{\theta_1^* = 0.6, \theta_2^* = 0.4, \theta_3^* = 0.7\}.$$

Algorithm: Thompson sampling (TS)

- Given prior distribution p₀(θ^{*}) over model θ^{*}. Set initial dataset D₀ = Ø.
- For $t = 1, \ldots, T$,
 - Sample $\tilde{\theta}_t \sim p(\theta^* \mid D_{t-1})$ from posterior - Select $x_t = \arg \max \mathbb{E}[r(y_t) \mid x_t = x, \theta^* = \tilde{\theta}_t]$ and $observe \ y_t$ and $r_t = r(y_t)$ - Update the history dataset $D_t = D_{t-1} \cup \{(x_t, y_t)\}$
- ▶ TS would sample actions 1, 2, or 3, with prob. \approx 0.82, 0, and 0.18, respectively.
- TS explores θ^{*}₃ to solve its uncertainty and finally identifies the optimal action

Figure: Posterior p.d.f. over mean rewards after the agent tries **actions 1 and 2 one thousand times each, action 3 three times**, receives cumulative rewards of 600, 400, and 1. Ground truth $\{\theta_1^* = 0.6, \theta_2^* = 0.4, \theta_3^* = 0.7\}.$

Definition 1 (Performance metric: Regret).

$$Regret(T) = \sum_{t=1}^{T} \mathbb{E}[\max_{\mathbf{x}} \mathbb{E}[r(y) \mid \mathbf{x}, \theta^*] - r(y_t)]$$

In previous bernoulli bandit example, $heta_1^*=0.6, heta_2^*=0.4, heta_3^*=0.7$ and

$$\max_{x} \mathbb{E}[r(y) \mid x, \theta^*] = \theta_3^*.$$

Therefore, $\operatorname{Regret}(T) = T\theta_3^* - \mathbb{E}[\sum_{t=1}^T r(y_t)].$

Algorithm: Thompson sampling (TS)

- Given prior distribution $p_0(\theta^*)$ over model θ^* . Set initial dataset $D_0 = \emptyset$.
- For $t = 1, \ldots, T$,
 - Sample $\tilde{\theta}_t \sim p(\theta^* \mid D_{t-1})$ from posterior
 - Select $x_t = \underset{x \in \mathcal{A}}{\arg \max} \mathbb{E}[r(y_t) \mid x_t = x, \theta^* = \tilde{\theta}_t]$ and observe y_t and $r_t = r(y_t)$
 - Update the history dataset $D_t = D_{t-1} \cup \{(x_t, y_t)\}$

Theorem 1 (Thompson sampling for K-armed bandit [RVRK+18]).

K actions with mean parameter $\{\theta_1^*, \ldots, \theta_K^*\}$, and when played, any action yields the observation $y_t \sim \text{Bernoulli}(\theta_k^*)$ and resulting the reward $r_t = r(y_t)$. The regret lower bound is $\Omega(\sqrt{KT})$. Thompson sampling achieves near-optimal regret up to a $\log K$ factor,

 $Regret(T) = O(\sqrt{KT\log K}).$

How to track the degree of uncertainty? Bayesian inference

► Given data $D_T = \{(x_t, y_t), t = 1, ..., T\}$, compute the posterior of θ^* via the **Bayes rule** $p(\theta^* | D_T) \propto p(D_T | \theta^*) p_0(\theta^*)$

Example: Beta-Bernoulli model

- Prior: $\theta^* \in \mathbb{R}^K$ each $\theta_k \sim p_0$: Beta (α_k, β_k)
- $y_t \sim \text{Bernoulli}(\theta_{x_t})$
- ▶ Posterior over $\theta_k \mid D_T$ still Beta with parameters

$$\left(\alpha_k + \sum_{t=1}^T y_t \mathbb{I}_{x_t=k}, \beta_k + \sum_{t=1}^T (1-y_t) \mathbb{I}_{x_t=k}\right)$$

Example: Linear-Gaussian model

• Prior:
$$\theta^* \in \mathbb{R}^d \sim p_0 : N(\mu_0, \Sigma_0)$$

•
$$y_t = \langle \theta^*, x_t \rangle + \omega_t^*$$
 and $\omega_t^* \sim N(0, \sigma^2)$

• Gaussian Posterior $\theta^* \mid D_T \sim N(\mu_T, \boldsymbol{\Sigma}_T)$

$$\boldsymbol{\Sigma}_T = \left(\frac{1}{\sigma^2} \sum_{t=1}^T x_t x_t^\top + \boldsymbol{\Sigma}_0^{-1}\right)^{-1},$$
$$\boldsymbol{\mu}_T = \boldsymbol{\Sigma}_T \left(\frac{1}{\sigma^2} \sum_{t=1}^T x_t y_t + \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0\right).$$

Conjugacy allows for incremental update on Bayesian posterior

• Update Σ_t by Sherman-Morrison formula

$$\boldsymbol{\Sigma}_{t} = \left(\boldsymbol{\Sigma}_{t-1}^{-1} + \frac{1}{\sigma^{2}}\boldsymbol{x}_{t}\boldsymbol{x}_{t}^{\top}\right)^{-1} = \boldsymbol{\Sigma}_{t-1} - \frac{\boldsymbol{\Sigma}_{t-1}\boldsymbol{x}_{t}\boldsymbol{x}_{t}^{\top}\boldsymbol{\Sigma}_{t-1}}{\sigma^{2} + \boldsymbol{x}_{t}^{\top}\boldsymbol{\Sigma}_{t-1}\boldsymbol{x}_{t}}$$

▶ (Incrementally) Update $p_t := \Sigma_t^{-1} \mu_t$ with

$$\underbrace{\sum_{t=1}^{-1} \mu_{t}}_{p_{t}} = \underbrace{\sum_{t=1}^{-1} \mu_{t-1}}_{p_{t-1}} + \frac{1}{\sigma^{2}} x_{t} y_{t}$$
(1)

 \blacktriangleright Compute μ_t

$$\mu_t = \boldsymbol{\Sigma}_t p_t$$

Fact:

Without conjugacy properties, exact Bayesian posterior inference is intractable.

Question:

How to perform posterior sampling without using conjugacy?

Sequential Decision-making under Uncertainty

Sampling through optimization with perturbed history

For a history dataset $D_t = \{(x_s, y_s)_{s=1}^t\}$, perturb with algorithmic noise to generate a

Perturbed history $\tilde{D}_t = \{ \tilde{\theta}_0 \sim N(\mu_0, \Sigma_0), (x_s, y_s + \sigma z_s); z_s \sim N(0, 1), s = 1, \dots, t \}$

Randomize Least Square (RLS) via Perturbed History (PH) [OAC18, OVRRW19]

$$\theta_t = \arg\min_{\theta} \ell(\theta; \tilde{D}_t) := \frac{1}{\sigma^2} \sum_{s=1}^t (g_{\theta}(x_s) - y_s - \sigma z_s)^2 + \theta^{\top} \Sigma_0^{-1} \theta$$
(2)

where $g_{\theta}(x)$ could be a generic nonlinear function.

Significance of Equation (2)

- Sampling through a purely computational perspective.
- No explicit posterior inference.
- No use of conjugacy properties.

Understanding RLS-PH under fixed history

Justification of Equation (2): posterior sampling

If the **fixed** history dataset D_t is generated from a Linear-Gaussian model w. prior $\theta^* \sim N(\mu_0, \Sigma_0)$ and $g_{\theta}(x) = \langle \theta + \tilde{\theta}_0, x \rangle$, then the optimal solution of Equation (2) is a posterior sample

$$ilde{ heta}_t := (egin{array}{c} heta_t &+ ilde{ heta}_0 \end{pmatrix} \overset{i.i.d.}{\sim} heta^* \mid D_t.$$

$$\begin{split} \tilde{\theta}_t &:= \theta_t + \tilde{\theta}_0 = \Sigma_t \left(\frac{1}{\sigma^2} \sum_{s=1}^t x_s (y_s + \sigma z_s) + \Sigma_0^{-1} \tilde{\theta}_0 \right) \quad s.t. \\ \mathbb{E}[\tilde{\theta}_t \mid D_t] &= \Sigma_t \left(\frac{1}{\sigma^2} \sum_{s=1}^t x_s (y_s + \sigma \underbrace{\mathbb{E}[z_s \mid D_t]}_{=0}) + \Sigma_0^{-1} \underbrace{\mathbb{E}[\tilde{\theta}_0 \mid D_t]}_{=0} \right) = \mu_t = \mathbb{E}[\theta^* \mid D_t], \\ \operatorname{Cov}[\tilde{\theta}_t \mid D_t] &= \Sigma_t \left(\frac{1}{\sigma^2} \sum_{s=1}^t x_s \underbrace{\mathbb{E}[z_s z_s^\top \mid D_t]}_{=I} x_s^\top + \Sigma_0^{-1} \underbrace{\operatorname{Cov}[\tilde{\theta}_0 \mid D_t]}_{=\Sigma_0} \Sigma_0^{-1} \right) \Sigma_t = \Sigma_t = \operatorname{Cov}[\theta^* \mid D_t]. \end{split}$$

A hypothetical algorithm for sequential-decision making without conjugacy

Incremental RLS for linear bandit w. prior: $\theta^* \in \mathbb{R}^d \sim p_0 : N(\mu_0, \Sigma_0)$.

- Initialize prior perturbation $\tilde{\theta}_0 \sim N(\mu_0, \Sigma_0)$
- For $t = 1, \ldots, T$ do

— Decision: Select
$$\mathbf{x}_t = \underset{x \in \mathcal{A}}{\arg \max(x, \tilde{\theta}_{t-1})}$$
 and observe $y_t = \langle \theta^*, x_t \rangle + \omega_t^*$
where $\omega_t^* \sim N(0, \sigma^2)$ is the environmental noise

- Adaptation: Incrementally update model according to recursive LS

$$\tilde{\theta}_{t} = \Sigma_{t} \left(\Sigma_{t-1}^{-1} \tilde{\theta}_{t-1} + \frac{y_{t} + \sigma z_{t}}{\sigma^{2}} \mathbf{x}_{t} \right)$$
(3)

where each $z_t \sim N(0, 1)$ is an independent perturbation at each step *t*.

Starting from this page, we use boldface x_t to emphasize it is a history-dependent R.V.

•
$$D_t = \{(\mathbf{x}_s, y_s)_{s=1}^t\}$$
 is a adaptively sampled dataset.

- Bayesian regret (avg 200 expes) in Linear-Gaussian bandit
- X Incremental RLS (Blue) suffer linear regret (failure).
- Thompson sampling (Black) uses conjugacy for posterior update and then generates a sample from posterior.
 Sublinear regret.

Existing solutions and their limitations

Why incremenal RLS does not work for sequential decision making?

Sequential Dependence due to incremental update alongside sequential decision-making.

▶ Posterior mean **not** matching due to the Sequential Dependence. $D_t = \{(\mathbf{x}_s, y_s)_{s=1}^t\}$

$$\mathbb{E}[\tilde{\theta}_t \mid D_t] = \Sigma_t \left(\Sigma_0^{-1} \underbrace{\mathbb{E}[\tilde{\theta}_0 \mid D_t]}_{\neq \mu_0} + \sum_{s=1}^{t-1} \frac{\mathbf{x}_s}{\sigma^2} (y_s + \sigma \underbrace{\mathbb{E}[z_s \mid D_t]}_{\neq 0}) + \frac{\mathbf{x}_t}{\sigma^2} (y_t + \sigma \underbrace{\mathbb{E}[z_t \mid D_t]}_{=0}) \right) \neq \mathbb{E}[\theta^* \mid D_t]$$

X Incremental RLS produces biased posterior sample!

Deal with issues due to Sequential Dependence? Solution 1: Resampling

- For each step t, resample, $\tilde{\theta}_0^{(t)} \sim N(\mu_0, \Sigma_0), z_s^{(t)} \sim N(0, 1)$ for $s = 1, \dots, t$ independently and
- Form a new perturbed history $\tilde{D}_t^{(t)} = \{\tilde{\theta}_0^{(t)}, (\mathbf{x}_s, y_s + \sigma z_s^{(t)}); s = 1, \dots, t\}$ for each step t,

For each step t, re-train perturbed optimization problem from scratch, resulting $\tilde{\theta}_t(\tilde{D}_t^{(t)})$.

► ✓ Posterior sampling: $\tilde{\theta}_t(\tilde{D}_t^{(t)}) \sim \theta^* \mid D_t$ since $D_t \perp (\tilde{\theta}_0^{(t)}, z_1^{(t)}, z_2^{(t)}, \dots, z_t^{(t)})$. Break the dependence!

X Computational cost growing unboundedly as data accumulated. No Incremental update.

Ensemble sampling (ES) [OVRRW19, LVR17]

- ▶ Initialize each *m*-th model $\tilde{\theta}_{0,m} \sim N(\mu_0, \Sigma_0)$ independently for $m \in \{1, ..., M\}$
- For $t = 1, \ldots, T$ do
 - Decision: Sample $m_t \sim \text{unif}\{1, \dots, M\}$. Select $\mathbf{x}_t = \underset{\mathbf{x} \in A}{\operatorname{arg\,max}} \langle \mathbf{x}, \tilde{\theta}_{t-1, m_t} \rangle$ and observe y_t
 - Adaptation: $\forall m \in [M]$, Incrementally update each *m*-th model according to

$$\tilde{\theta}_{t,m} = \Sigma_t \left(\Sigma_{t-1}^{-1} \tilde{\theta}_{t-1,m} + \frac{y_t + \sigma \mathbf{z}_{t,m}}{\sigma^2} \mathbf{x}_t \right)$$
(4)

where each $\mathbf{z}_t = (\mathbf{z}_{t,1}, \cdots, \mathbf{z}_{t,M})^\top \sim N(0, \mathbf{I}_M)$ is an independent perturbation at each step t.

Why ensemble sampling works? Intuition

Intuition: breaking the dependence by large ensemble size

▶ If M sufficiently large, at time t + 1, ES select an index $m_{t+1} \neq m, \forall m \in \{m_s\}_{s=1}^t$ w.h.p., then

$$\mathbb{E}\left[\tilde{\theta}_{t,m_{t+1}} \mid D_t\right] = \Sigma_t \left(\Sigma_0^{-1} \underbrace{\mathbb{E}\left[\tilde{\theta}_{0,m_{t+1}} \mid D_t\right]}_{=\mu_0} + \sum_{s=1}^t \frac{\mathbf{x}_s}{\sigma^2} (y_s + \sigma \underbrace{\mathbb{E}\left[\mathbf{z}_{s,m_{t+1}} \mid D_t\right]}_{=0}) \right) = \mathbb{E}\left[\theta^* \mid D_t\right]$$

and posterior covariance also matches as $D_t \perp (\tilde{\theta}_{0,m_{t+1}}, (\mathbf{z}_{s,m_{t+1}})_{s=1}^t)$

Online incremental optimization formulation of ensembles

For each $m \in [M]$, the *m*-th perturbed history dataset: Init $\tilde{D}_{0,m} = {\{\tilde{\theta}_{0,m}\}}$ and increment

$$\tilde{D}_{t,m} = \tilde{D}_{t-1,m} \cup \{\mathbf{x}_t, y_t, \mathbf{z}_{t,m}\}$$

For each $m \in [M]$, the learned model $\theta_{t,m}$ is the solution of the incremental RLS updated from $\theta_{t-1,m}$ with new data (\mathbf{x}_t, y_t) :

$$\theta_{t,m} = \arg\min_{\theta} L(\theta; \tilde{D}_{t,m}) = \frac{1}{\sigma^2} (g_{\theta,m}(\mathbf{x}_t) - y_t - \sigma \mathbf{z}_{t,m})^2 + (\theta - \theta_{t-1,m})^\top \Sigma_{t-1}^{-1} (\theta - \theta_{t-1,m})$$
(5)

• If $g_{\theta,m}(x) = \langle \theta + \tilde{\theta}_{0,m}, x \rangle$, Equation (5) reduces to Equation (4).

In general, $g(\cdot)$ could be any function, including nonlinear mapping, e.g. neural networks.

Existing solutions and their limitations

 \blacktriangleright The *m*-th model

- ► Histogram effect: Larger ensemble size M, uniform distribution over M models $\mathcal{U}(\tilde{\theta}_1, \ldots, \tilde{\theta}_M)$ better approximate the true posterior distribution.
- Sequential dependence issue: inevitably introduced by the interleaving between incremental update and sequential decision-making. To solve this issue, we need large ensemble size M to break the dependence.

Statistics v.s. Computation Trade-offs

Posterior approximation: Requires a huge number of ensembles (M > 100) for good approximation and sequential decision-making. [LLZ⁺22, OWA⁺23, LXHL24]

\blacktriangleright X Computationally expensive: say, update > 100 neural networks for each time step.

▶ Refer to [LLZ⁺22, LXHL24].

- [LLZ⁺22] Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, and Zhi-Quan Luo. HyperDQN: A randomized exploration method for deep reinforcement learning. In International Conference on Learning Representations, 2022.
 - [LVR17] Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. *Advances in neural information* processing systems, 30, 2017.
- [LXHL24] Yingru Li, Jiawei Xu, Lei Han, and Zhi-Quan Luo. HyperAgent: A Simple, Scalable, Efficient and Provable Reinforcement Learning Framework for Complex Environments. In Proceedings of the 41th International Conference on Machine Learning, Proceedings of Machine Learning Research, 2024.
- [OAC18] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement learning. *Advances in Neural Information Processing Systems*, 31, 2018.
- [OVRRW19] Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized value functions. *Journal of Machine Learning Research*, 20(124):1–62, 2019.

- [OWA⁺23] Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [RVRK⁺18] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.