Yingru Li
Yingru Li
Home
Posts
Research
Contact
Resume
RL-Seminar
Light
Dark
Automatic
Reinforcement Learning
HyperDQN: A Randomized Exploration Method for Deep Reinforcement Learning
TL;DR
: We design a practical randomized exploration method to address the sample efficiency issue in online reinforcement learning.
Ziniu Li
,
Yingru Li* (corresponding)
,
Yushun Zhang
,
Tong Zhang
,
Zhi-Quan Luo
PDF
Cite
Code
Video
HyperDQN - Randomized Exploration for Deep Reinforcement Learning
Dec 14, 2021 12:00 AM
NeurIPS 2021
Yingru LI
Slides
Video
Follow
Divergence-augmented policy optimization
Stabilizing policy optimization when off-policy data are reused, addressing the data efficiency issue in RL for real-world problems.
Qing Wang*
,
Yingru Li* (equal)
,
Jiechao Xiong
,
Tong Zhang
PDF
Cite
Code
Poster
Publications
«
Cite
×