Trust Region Masking for Long-Horizon LLM Reinforcement Learning

Yingru Li

December 20, 2025

Outline

I. Motivation: Off-Policy Mismatch in LLM-RL

Why $\pi_{roll} \neq \pi_{\theta}$ is unavoidable in modern LLM-RL (prior work)

II. Tighter Error Bounds

Classical $O(T^2)$ vs. new $O(T^{3/2})$ and O(T) bounds

Key: All bounds depend on $D_{KL}^{\text{tok,max}}$ —the maximum token-level divergence across all positions in a sequence (a sequence-level quantity)

III. Why Token-Level Methods Fail

Token-level methods (PPO clipping, token masking) cannot control this sequence-level quantity—they operate independently at each position

IV. Solution: Trust Region Masking

Mask entire sequences \Rightarrow ensures $D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} \leq \delta \Rightarrow$ non-vacuous guarantees

V. Conclusion

Summary and future directions

Contributions

Motivation: Prior work shows off-policy mismatch ($\pi_{\text{roll}} \neq \pi_{\theta}$) is unavoidable in modern LLM-RL.

Our Contributions:

- **1 Tighter Error Bounds:** Derive $O(T^{3/2})$ Pinsker-Marginal and O(T) Mixed bounds, improving over classical $O(T^2)$ by $O(\sqrt{T})$ to O(T) factors
- Key Insight: Both bounds depend on D_{KL}^{tok,max}—the maximum token-level divergence across all positions in the sequence. This is inherently a sequence-level quantity.
- Failure of Token-Level Methods: Token-independent methods (PPO clipping, token masking) cannot control this sequence-level quantity
- **TRM Algorithm:** Mask entire sequences violating trust region \Rightarrow ensures $D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} \leq \delta$ for accepted sequences \Rightarrow first non-vacuous guarantees

Section I

Motivation: Off-Policy Mismatch in LLM-RL

Why the rollout policy $\pi_{\rm roll}$ differs from the training policy π_{θ} (Background from prior work)

1.1.1 Implementation Divergence

The Assumption: Identical parameters θ produce identical distributions:

$$\mathsf{Logits}_{\mathsf{inference}}(x, y_{< t}; \theta) \equiv \mathsf{Logits}_{\mathsf{train}}(x, y_{< t}; \theta)$$

where x is the prompt and $y_{< t}$ denotes tokens generated before position t.

The Reality: Modern LLM stacks use different implementations for inference vs. training. Inference (vLLM/SGLang): Training (Megatron/FSDP):

- PagedAttention
- FP8/INT8 KV-cache quantization
- Aggressive operator fusion

- FlashAttention-2
- BF16/FP32 accumulation
- Tensor parallelism

Result: Even with identical weights, logits differ systematically.

1.1.2 Floating-Point Non-Associativity

Root Cause: Floating-point arithmetic is non-associative.

$$(a \oplus b) \oplus c \neq a \oplus (b \oplus c)$$

In Attention:

$$\mathsf{Attn}(Q,K,V) = \mathsf{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$$

The softmax denominator involves summing over context length. Different reduction orders yield different results.

Autoregressive Amplification:

- Token y_1 : Small logit difference δ_1
- **3** Token y_2 : Difference compounds to $\delta_2 > \delta_1$
- ... continues for T steps

Conclusion: The rollout distribution π_{roll} differs from the training distribution π_{θ} .

1.2.1 The Top-K Discontinuity

In Mixture-of-Experts models (Mixtral, DeepSeek-V2):

$$y = \sum_{i \in \mathcal{K}} g_i(x) \cdot E_i(x), \quad \mathcal{K} = \mathsf{Top}\text{-}\mathcal{K}(h(x))$$

The Problem: Top-K is a **discontinuous** function of router logits h(x). **Combined with Precision Drift:**

$$h_{\mathsf{inf}} = h_{\mathsf{train}} + \epsilon_{\mathsf{drift}}$$

If $|h_{(K)} - h_{(K+1)}| < \|\epsilon_{\text{drift}}\|$, different experts are selected:

$$\mathcal{K}_{\mathsf{train}}
eq \mathcal{K}_{\mathsf{inf}}$$

Result: Completely different token distributions from the same weights.

1.2.2 Support Collapse

When different experts are selected, token probabilities can differ drastically.

Example:

- Rollout (Expert A): $\pi_{\text{roll}}(\text{"apple"}) = 0.9$
- Train (Expert B): π_{θ} ("apple") = 0.001

Importance Ratio (ratio of training to rollout probability):

$$\rho = \frac{\pi_{\theta}(y)}{\pi_{\text{roll}}(y)} = \frac{0.001}{0.9} \approx 0.001 \quad \text{or} \quad \frac{0.9}{0.001} = 900$$

This is **impulse noise**—not Gaussian, but discrete jumps that corrupt gradient estimates. (We will formally define ρ_t in Section 2.)

1.3.1 The Staleness Gap

Large-scale LLM-RL uses decoupled architectures:

• Actors: Generate rollouts with $\pi_{\theta_{\text{old}}}$

• Learner: Updates to $\pi_{\theta_{new}}$

• Latency: k gradient steps between generation and consumption

$$heta_{\mathsf{train}} = heta_{\mathsf{rollout}} + \sum_{i=1}^k \Delta heta_i$$

Effect: Even with identical implementations, $\pi_{roll} \neq \pi_{\theta}$ due to parameter drift.

Compound Effect: Staleness shifts expert routing boundaries, amplifying MoE discontinuities.

1.4 Section Summary

Prior Work Finding: In modern LLM-RL, off-policy mismatch is systemic, not incidental.

Source	Mechanism
Implementation	Different kernels, precision, reduction order
MoE Routing	Discontinuous Top-K selection
Staleness	Parameter drift in distributed training

Implication: We cannot assume $\pi_{\text{roll}} = \pi_{\theta}$. Theory must account for distribution mismatch.

Next: What theoretical guarantees do we need for safe optimization?

Section II

Tighter Error Bounds

Classical $O(T^2)$ vs. new $O(T^{3/2})$ and O(T) bounds

2.1.1 Autoregressive Generation

Setup:

- Prompt: $x \sim P(x)$
- Response: $y = (y_1, \dots, y_T)$, each $y_t \in \mathcal{V}$ (vocabulary)
- Context at step t: $c = (x, y_{< t})$
- Policy (parameterized by θ): $\pi_{\theta}(y_t|x, y_{< t})$
- Terminal reward: $R(x, y) \in [0, 1]$

Two Key Policies:

- π_{roll} : Rollout policy generates training data
- π_{θ} : Training policy policy being optimized

Trajectory Distribution:

$$P^{\pi}(y|x) = \prod_{t=1}^{T} \pi(y_t|x, y_{< t})$$

Objective:
$$J(\pi_{\theta}) = \mathbb{E}_{x \sim P(x)} \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} [R(x,y)]$$

2.1.2 Context Visitation Distribution

Definition: The probability of reaching context $(x, y_{< t})$ under policy π :

$$d_t^{\pi}(x, y_{< t}) = P(x) \prod_{s=1}^{t-1} \pi(y_s | x, y_{< s})$$

Key Property: Different policies induce different context distributions:

$$\pi_{ heta}
eq \pi_{\mathsf{roll}} \implies d_t^{\pi_{ heta}}
eq d_t^{\pi_{\mathsf{roll}}} \quad \text{for } t \geq 2$$

Small per-token differences compound into large distributional shifts over the generation.

2.2.1 The Optimization Problem

Goal: Maximize $J(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}}[R(x, y)]$

Constraint: We only have samples from π_{roll} , not π_{θ} . **From Section I:** $\pi_{\text{roll}} \neq \pi_{\theta}$ always (systemic mismatch).

Need: An objective $L(\pi_{\theta})$ such that:

- Computable from π_{roll} samples
- **②** Optimizing L also improves J (at least locally)

2.2.2 Why Trajectory Importance Sampling Fails

Naive Approach: Use importance sampling on the full trajectory.

$$J(\pi_{\theta}) = \mathbb{E}_{\pi_{\textbf{roll}}}\left[\frac{P^{\pi_{\theta}}(y|x)}{P^{\pi_{\textbf{roll}}}(y|x)} \cdot R(x,y)\right] = \mathbb{E}_{\pi_{\textbf{roll}}}\left[\prod_{t=1}^{T} \rho_{t} \cdot R\right]$$

where $\rho_t = \pi_{\theta}(y_t|x, y_{< t})/\pi_{\text{roll}}(y_t|x, y_{< t})$.

The Problem:

$$\operatorname{\mathsf{Var}}\left(\prod_{t=1}^{\mathcal{T}} \rho_t\right) = O\left(e^{\mathcal{T}}\right)$$

For T = 1000: estimator is **useless**.

Key Question: Can we avoid the product $\prod_t \rho_t$?

2.2.3 The Policy Gradient Has Sum Structure

Key Insight: The gradient ∇J decomposes as a **sum! REINFORCE** [Williams, 1992]:

$$abla J = \mathbb{E}_{\pi_{ heta}}\left[R \cdot
abla \log P^{\pi_{ heta}}(y|x)
ight] = \mathbb{E}_{\pi_{ heta}}\left[R \cdot \sum_{t=1}^{T}
abla \log \pi_{ heta}(y_t|x,y_{< t})
ight]$$

With Baseline (reduces variance, same expectation):

$$abla J = \mathbb{E}_{\pi_{ heta}} \left[A \cdot \sum_{t=1}^T
abla \log \pi_{ heta}(y_t|x,y_{< t})
ight]$$

where A = R(x, y) - b is the **trajectory advantage** and b is a baseline (e.g., batch mean reward). **This is the key:** Sum structure enables per-token importance sampling!

2.2.4 The Surrogate Objective

Idea: Apply IS to each term in the sum, not the whole trajectory. **The Surrogate** [Kakade & Langford, 2002; Schulman et al., 2015]:

$$L_{\pi_{f roll}}(\pi_{ heta}) = \mathbb{E}_{\pi_{f roll}}\left[A \cdot \sum_{t=1}^T
ho_t
ight]$$

Equivalently (distributing the advantage):

$$L_{\pi_{ extbf{roll}}}(\pi_{ heta}) = \mathbb{E}_{\pi_{ extbf{roll}}}\left[\sum_{t=1}^{T}
ho_t \cdot A
ight]$$

Critical Difference:

- Trajectory IS: $\prod_t \rho_t$ variance $O(e^T)$
- Per-token IS: $\sum_t \rho_t$ variance O(T)

2.2.5 Why the Surrogate Works

Claim: At $\pi_{\theta} = \pi_{\text{roll}}$, we have $\nabla L = \nabla J$.

Proof:

$$abla_{ heta} L = \mathbb{E}_{\pi_{ extbf{roll}}} \left[A \cdot \sum_{t=1}^{T}
abla_{ heta}
ho_{t}
ight] = \mathbb{E}_{\pi_{ extbf{roll}}} \left[A \cdot \sum_{t=1}^{T}
ho_{t}
abla_{ heta} \log \pi_{ heta}(y_{t}|x,y_{< t})
ight]$$

At $\pi_{\theta} = \pi_{\mathsf{roll}}$ (so $\rho_t = 1$):

$$\begin{split} \left. \nabla_{\theta} L \right|_{\pi_{\textbf{roll}}} &= \mathbb{E}_{\pi_{\textbf{roll}}} \left[A \cdot \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} (y_{t} | x, y_{< t}) \right] \\ &= \mathbb{E}_{\pi_{\textbf{roll}}} \left[A \cdot \nabla_{\theta} \log P^{\pi_{\theta}} (y | x) \right] = \nabla_{\theta} J \big|_{\pi_{\textbf{roll}}} \quad \checkmark \end{split}$$

Also: $L(\pi_{\mathsf{roll}}) = \mathbb{E}[A \cdot T] = 0$ when $b = \mathbb{E}[R]$.

2.2.6 From Local to Global: The Optimization Gap

What we've shown:

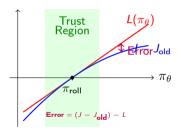
- $L(\pi_{\text{roll}}) = 0$ and $\nabla L|_{\pi_{\text{roll}}} = \nabla J|_{\pi_{\text{roll}}}$
- So L and $J-J(\pi_{\mathsf{roll}})$ are **tangent** at π_{roll}

The optimization scenario:

- We can only compute L (from π_{roll} samples)
- We maximize L, hoping this improves J
- After update: $\pi_{\theta} \neq \pi_{\text{roll}}$

The key question:

Does $L(\pi_{\theta}) > 0$ guarantee $J(\pi_{\theta}) > J(\pi_{\mathsf{roll}})$?



2.2.7 Defining the Approximation Error

From the figure: The gap between L and $J - J(\pi_{\text{roll}})$ grows as π_{θ} moves from π_{roll} .

Define the **approximation error**:

$$\mathsf{Error}(\pi_{\theta}) = J(\pi_{\theta}) - J(\pi_{\mathsf{roll}}) - L(\pi_{\theta})$$

Rearranging: $J(\pi_{\theta}) - J(\pi_{\text{roll}}) = L(\pi_{\theta}) + \text{Error}(\pi_{\theta})$

Guarantee Condition:

• If $L(\pi_{\theta}) > |\text{Error}(\pi_{\theta})|$, then $J(\pi_{\theta}) > J(\pi_{\text{roll}})$ (guaranteed improvement!)

We know: At $\pi_{\theta} = \pi_{\text{roll}}$: Error = 0; as π_{θ} diverges: Error grows.

Goal: Derive an exact expression for this error, then bound it.

2.3.1 The Performance Difference Identity

Theorem (PDI) [Kakade & Langford, 2002]:

Define per-step advantage: $A_t^{\pi_{\text{roll}}}(x,y_{\leq t}) = Q^{\pi_{\text{roll}}}(x,y_{\leq t}) - V^{\pi_{\text{roll}}}(x,y_{< t})$ where $Q^{\pi_{\text{roll}}}(x,y_{\leq t}) = \mathbb{E}_{\pi_{\text{roll}}}[R|x,y_{\leq t}]$ and $V^{\pi_{\text{roll}}}(x,y_{< t}) = \mathbb{E}_{\pi_{\text{roll}}}[R|x,y_{< t}]$. Let $g_t(x,y_{< t}) = \mathbb{E}_{y_t \sim \pi_{\theta}}[A_t^{\pi_{\text{roll}}}(x,y_{\leq t})]$.

True improvement:

$$J(\pi_{ heta}) - J(\pi_{\mathsf{roll}}) = \sum_{t=1}^{I} \mathbb{E}_{d_t^{\pi_{ heta}}}\left[g_t
ight]$$

Surrogate value:

$$L(\pi_{ heta}) = \sum_{t=1}^{T} \mathbb{E}_{d_t^{\pi_{\mathbf{roll}}}}[g_t]$$

The error:

$$\mathsf{Error} = \sum_{t=1}^T \left(\mathbb{E}_{d_t^{\pi_{ heta}}}[g_t] - \mathbb{E}_{d_t^{\pi_{ extsf{roll}}}}[g_t]
ight)$$

2.3.3 Interpretation

From the PDI:

$$\mathsf{Error} = \sum_{t=1}^{I} \underbrace{\left(\mathbb{E}_{d_t^{\pi_\theta}}[g_t] - \mathbb{E}_{d_t^{\pi_{\mathsf{roll}}}}[g_t]\right)}_{\mathsf{Expectation under wrong context \ distribution}}$$

Expanding the expectation: Let $c_t = (x, y_{< t})$ denote a context at step t.

$$= \sum_{t=1}^{T} \sum_{c_t} \underbrace{\left(d_t^{\pi_{\theta}}(c_t) - d_t^{\pi_{\mathsf{roll}}}(c_t)\right)}_{\mathsf{Context \ probability \ shift}} \cdot g_t(c_t)$$

Key Insights:

- At $\pi_{\theta} = \pi_{\text{roll}}$: $d_t^{\pi_{\theta}} = d_t^{\pi_{\text{roll}}}$, so error = 0. \checkmark
- **②** As π_{θ} diverges: Context distributions diverge, error grows.
- **3** Accumulation: Errors compound over *T* steps.

See Appendix A.4–A.5 for connection to trajectory advantage A = R - b.

Next: How do we **bound** this error?

2.4.1 The Error Structure

From Performance Difference Identity:

$$\mathsf{Error} = \sum_{t=1}^{T} \left(\mathbb{E}_{c_t \sim d_t^{\pi_\theta}}[g_t(c_t)] - \mathbb{E}_{c_t \sim d_t^{\pi_\mathsf{roll}}}[g_t(c_t)] \right)$$

where $g_t(c_t) := \mathbb{E}_{y_t \sim \pi_\theta}[A_t(c_t, y_t)]$ is the expected advantage at context $c_t = (x, y_{< t})$.

Bounding via Total Variation:

$$egin{align*} |\mathsf{Error}| &\leq \sum_{t=1}^T \left| \mathbb{E}_{d_t^{\pi_{ heta}}}[g_t] - \mathbb{E}_{d_t^{\pi_{ extsf{roll}}}}[g_t]
ight| \ &\leq 2 \sum_{t=1}^T \|g_t\|_{\infty} \cdot \|d_t^{\pi_{ heta}} - d_t^{\pi_{ extsf{roll}}}\|_{\mathsf{TV}} \end{aligned}$$

Two Quantities to Bound:

- $\|g_t\|_{\infty} = \max_{c_t} |g_t(c_t)|$: How much can expected advantage vary?
- $\|d_t^{\pi_\theta} d_t^{\pi_{\text{roll}}}\|_{\text{TV}}$: How different are the context distributions?

[Source: Performance Difference Lemma, Kakade & Langford 2002]

2.4.2 The Martingale Property

Claim: For **any** reward structure, the advantage satisfies:

$$\mathbb{E}_{y_t \sim \pi_{f roll}(\cdot|c)}[A_t(c,y_t)] = 0 \quad ext{for all contexts } c$$

Proof: By definition of value function:

$$egin{aligned} \mathbb{E}_{y_t \sim \pi_{ extbf{roll}}}[A_t(c, y_t)] &= \mathbb{E}_{\pi_{ extbf{roll}}}[Q^{\pi_{ extbf{roll}}}(c, y_t) - V^{\pi_{ extbf{roll}}}(c)] \ &= \mathbb{E}_{\pi_{ extbf{roll}}}[Q^{\pi_{ extbf{roll}}}(c, y_t)] - V^{\pi_{ extbf{roll}}}(c) \ &= V^{\pi_{ extbf{roll}}}(c) - V^{\pi_{ extbf{roll}}}(c) = 0 \quad \checkmark \end{aligned}$$

The last step uses $V(c) = \mathbb{E}_{y_t \sim \pi}[Q(c, y_t)]$ by definition.

Key Point: This is NOT an assumption — it follows from the definitions of V and Q. It holds for **all** reward structures (dense, sparse, discounted, undiscounted).

2.4.3 Bounding $|g_t(c_t)|$ via the Martingale

Step 1: Rewrite using martingale property

$$\begin{split} g_t(c_t) &= \mathbb{E}_{y_t \sim \pi_{\theta}}[A_t(c_t, y_t)] - \underbrace{\mathbb{E}_{y_t \sim \pi_{\textbf{roll}}}[A_t(c_t, y_t)]}_{=0} \\ &= \sum_{y_t} \left(\pi_{\theta}(y_t|c_t) - \pi_{\textbf{roll}}(y_t|c_t)\right) \cdot A_t(c_t, y_t) \end{split}$$

Step 2: Bound via Total Variation

Define $D_{\mathsf{TV}}^{\mathsf{tok}}(c_t) := \frac{1}{2} \sum_{y} |\pi_{\theta}(y|c_t) - \pi_{\mathsf{roll}}(y|c_t)|$ (token-level TV at context c_t). For rewards $R \in [0,1]$: $|A_t| \leq 1$ (since $Q, V \in [0,1]$).

$$|g_t(c_t)| \leq \sum_{y_t} |\pi_{\theta}(y_t|c_t) - \pi_{\mathsf{roll}}(y_t|c_t)| \cdot |A_t(c_t, y_t)| \leq 2D^{\mathsf{tok}}_{\mathsf{TV}}(c_t)$$

Tightest Bound:

$$\|g_t\|_{\infty} \leq 2D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}}$$
 where $D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}} := \max_{t,c_t} D_{\mathsf{TV}}^{\mathsf{tok}}(c_t)$

2.5.0 Notation Summary: Divergence Measures

Context at timestep t: $c_t = (x, y_{< t})$ where $y_{< t} = (y_1, \dots, y_{t-1})$. Token-level divergences (at context c_t):

$$D^{\mathsf{tok}}_{\mathsf{TV}}(c_t) := rac{1}{2} \sum_{\mathsf{y}} |\pi_{ heta}(\mathsf{y}|c_t) - \pi_{\mathsf{roll}}(\mathsf{y}|c_t)|$$

$$D_{\mathsf{KL}}^{\mathsf{tok}}(c_t) := D_{\mathsf{KL}}(\pi_{\mathsf{roll}}(\cdot|c_t) \| \pi_{\theta}(\cdot|c_t)) = \sum_{y} \pi_{\mathsf{roll}}(y|c_t) \log \frac{\pi_{\mathsf{roll}}(y|c_t)}{\pi_{\theta}(y|c_t)}$$

Following TRPO, we use $D_{\text{KL}}(\pi_{\text{roll}} || \pi_{\theta})$ — computable exactly from stored logits. **Maximum token-level divergences** (over all timesteps and contexts):

$$D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}} := \max_{t,c_t} D_{\mathsf{TV}}^{\mathsf{tok}}(c_t), \quad D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} := \max_{t,c_t} D_{\mathsf{KL}}^{\mathsf{tok}}(c_t)$$

Sequence-level KL (via chain rule):

$$D_{\mathsf{KL}}^{\mathsf{seq}} := \sum_{t=1}^{\mathcal{T}} \mathbb{E}_{c_t \sim d_t^{\pi_{\mathsf{roll}}}} \left[D_{\mathsf{KL}}^{\mathsf{tok}}(c_t)
ight] \leq \mathcal{T} \cdot D_{\mathsf{KL}}^{\mathsf{tok, max}}$$

Pinsker's Inequality: $D_{\mathsf{TV}}(P,Q) \leq \sqrt{D_{\mathsf{KL}}(P\|Q)/2}$ (holds for either direction!)

2.5.1 TV Bound: Simulation Lemma (TRPO)

Simulation Lemma [Kakade & Langford 2002]:

$$\|d_t^{\pi_{ heta}} - d_t^{\pi_{ extsf{roll}}}\|_{\mathsf{TV}} \leq \sum_{s=1}^{t-1} D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}} = (t-1) \cdot D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}}$$

(Each step contributes at most $D_{TV}^{tok,max}$ to the context distribution shift.)

Summing over t:

$$\sum_{t=1}^T \|d_t^{\pi_{ heta}} - d_t^{\pi_{ extsf{roll}}}\|_{\mathsf{TV}} \leq \sum_{t=1}^T (t-1) \cdot D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}} = rac{T(T-1)}{2} \cdot D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}}$$

TRPO-Style Error Bound (combining with $||g_t||_{\infty} \leq 2D_{\text{TV}}^{\text{tok,max}}$):

$$egin{align*} |\mathsf{Error}| & \leq 2 \sum_{t=1}^T \|g_t\|_\infty \cdot \|d_t^{\pi_ heta} - d_t^{\pi_{f roll}}\|_{\mathsf{TV}} \ & \leq 2 \cdot (2D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}}) \cdot rac{T(T-1)}{2} \cdot D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}} = \boxed{2T(T-1) \cdot (D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}})^2} \end{aligned}$$

 $\text{Via Pinsker } (D_{\mathsf{TV}})^2 \leq D_{\mathsf{KL}}/2 \colon \Big| \, |\mathsf{Error}| \leq T(T-1) \cdot D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} \, \Big| \quad \mathsf{Scaling: } \, \mathcal{O}(T^2)$

2.5.2 The Problem with TRPO Bound

For Long-Horizon Reasoning (T=4096, $D_{\rm KL}^{\rm tok,max}=10^{-4}$): Pure KL form:

$$|\mathsf{Error}| \leq T(T-1) \cdot D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} = 4096 \times 4095 \times 10^{-4} \approx 1677$$

The Vacuous Bound Problem:

- For any practical step size, the error bound exceeds any possible gain
- No theoretical guarantee of improvement!

Root Cause:

- TV sub-additivity: $\|d_t^{\pi_\theta} d_t^{\pi_{\text{roll}}}\|_{\mathsf{TV}} \leq (t-1) \cdot D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}}$
- Final bound has $(D_{TV})^2$, so Pinsker's $\sqrt{\cdot}$ cancels with square
- Result: $O(T^2)$ scaling persists even in pure KL form

Can we do better? Yes — by using KL's chain rule! (See Appendix A.7)

2.5.3 New Bound: Pinsker on Marginal KL (Key Insight)

Key Insight: Apply Pinsker to the **accumulated marginal KL**, not per-step TV. **Step 1: KL of marginal context distributions (chain rule)**

$$D_{\mathsf{KL}}(d_t^{\pi_{\mathsf{roll}}} \| d_t^{\pi_{ heta}}) = \sum_{\mathsf{s}=1}^{t-1} \mathbb{E}_{c_{\mathsf{s}} \sim d_{\mathsf{s}}^{\pi_{\mathsf{roll}}}} \left[D_{\mathsf{KL}}^{\mathsf{tok}}(c_{\mathsf{s}})
ight] \leq (t-1) \cdot D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}}$$

Step 2: Apply Pinsker to the MARGINAL KL

$$\|d_t^{\pi_\theta} - d_t^{\pi_{\mathsf{roll}}}\|_{\mathsf{TV}} \leq \sqrt{\frac{D_{\mathsf{KL}}(d_t^{\pi_{\mathsf{roll}}} \| d_t^{\pi_\theta})}{2}} \leq \sqrt{\frac{(t-1) \cdot D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}}}{2}}$$

Crucial difference:

- TRPO: $\|d_t^{\pi_{\theta}} d_t^{\pi_{\mathsf{roll}}}\|_{\mathsf{TV}} \leq (t-1) \cdot D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}}$ (linear in t)
- $\bullet \; \mathsf{New:} \; \|d^{\pi_\theta}_t d^{\pi_{\mathsf{roll}}}_t\|_{\mathsf{TV}} \leq \sqrt{(t-1) \cdot D^{\mathsf{tok},\mathsf{max}}_{\mathsf{KL}}/2} \quad (\sqrt{t} \; \mathsf{growth!})$

The $\sqrt{\cdot}$ in Pinsker converts linear KL accumulation to \sqrt{t} TV growth!

2.5.4 Main Result: Pinsker-Marginal Bound

Step 3: Sum over t

$$\sum_{t=1}^{T} \|d_t^{\pi_\theta} - d_t^{\pi_{\mathsf{roll}}}\|_{\mathsf{TV}} \leq \sqrt{\frac{D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}}}{2}} \sum_{k=0}^{T-1} \sqrt{k} \leq \frac{2}{3} T^{3/2} \sqrt{\frac{D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}}}{2}}$$

Step 4: Combine with $||g_t||_{\infty} \leq \sqrt{2 \cdot D_{KL}^{\text{tok,max}}}$

Pure KL Form (via Pinsker on both bounds):

$$|\mathsf{Error}| \leq rac{4}{3} \, \mathcal{T}^{3/2} \cdot D^{\mathsf{tok},\mathsf{max}}_{\mathsf{KL}}$$

where $D_{\mathsf{KI}}^{\mathsf{tok},\mathsf{max}} = \mathsf{max}_{t,c_t} D_{\mathsf{KL}}(\pi_{\mathsf{roll}}(\cdot|c_t) \| \pi_{\theta}(\cdot|c_t))$ (TRPO convention).

Scaling: $O(T^{3/2}) - \sqrt{T}$ improvement over TRPO!

[NEW — Our contribution]

2.5.5 Alternative: Mixed DPI Bound

Alternative approach: Use sequence-level KL for uniform bound.

Step 1: Marginal KL is a partial sum

$$D_{\mathsf{KL}}(d_t^{\pi_{\mathsf{roll}}} \| d_t^{\pi_{\theta}}) \leq D_{\mathsf{KL}}^{\mathsf{seq}}$$
 (uniform in t)

Step 2: Apply Pinsker (gives constant bound in t!)

$$\|d_t^{\pi_{ heta}} - d_t^{\pi_{ extsf{roll}}}\|_{\mathsf{TV}} \leq \sqrt{D_{\mathsf{KL}}^{\mathsf{seq}}/2}$$

Step 3: Sum and combine with $\|g_t\|_{\infty} \leq \sqrt{2 \cdot D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}}}$

Pure KL Form (via Pinsker):

$$|\mathsf{Error}| \leq 2T \cdot \sqrt{D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} \cdot D_{\mathsf{KL}}^{\mathsf{seq}}}$$

Scaling: O(T) — linear in T, requires both max and seq divergences. [NEW — Our contribution]

2.5.6 Summary: Complete Error Bound Hierarchy

All bounds use $D_{\mathrm{KL}}(\pi_{\mathrm{roll}} \| \pi_{\theta})$ (TRPO convention, exactly computable).

Method	Error Bound	Scaling
TV Chain (TRPO)	$T(T-1)D_{KL}^{tok,max}$	$O(T^2)$
Pinsker-Marginal	$rac{4}{3}T^{3/2}\cdot D^{tok,max}_KL$	$O(T^{3/2})$
Mixed (DPI)	$2T\sqrt{D_{KL}^{tok,max}\cdot D_{KL}^{seq}}$	O(T)

Key Insight: Apply Pinsker to marginal KL (from chain rule), not per-step TV.

Note: No pure D_{KL}^{seq} bound exists (see Appendix A.8 for counterexample).

2.5.7 Numerical Comparison

Setting: T = 4096, $D_{KL}^{tok,max} = 10^{-4}$

Scenario 1: Uniform KL ($D_{\text{KL}}^{\text{seq}} = T \cdot D_{\text{KL}}^{\text{tok,max}} = 0.41$)

Bound	Value	Source	Tighter?
TV Chain (TRPO)	1677	TRPO	
Pinsker-Marginal	35.0	New	\checkmark
Mixed (DPI)	52.4	New	

Improvement: Pinsker-Marginal is 48× tighter than TRPO!

Scenario 2: Sparse high-KL $(D_{\rm KL}^{\rm seq}=0.01)$

Bound	Value	Tighter?
Pinsker-Marginal	35.0	
Mixed (DPI)	8.2	✓

2.6.1 Constructing the Lower Bound

From: $J(\pi_{\theta}) - J(\pi_{\text{roll}}) = L(\pi_{\theta}) + \text{Error}$ Lower Bound (Minorizer):

$$egin{aligned} \mathcal{M}(\pi_{ heta}) &:= \mathit{L}(\pi_{ heta}) - |\mathit{Error}|_{\mathsf{bound}} \ &= \mathit{L} - \min\left\{rac{4}{3}\mathit{T}^{3/2}\cdot\mathit{D}_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}},\ 2\mathit{T}\cdot\sqrt{\mathit{D}_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}}\cdot\mathit{D}_{\mathsf{KL}}^{\mathsf{seq}}}
ight\} \end{aligned}$$

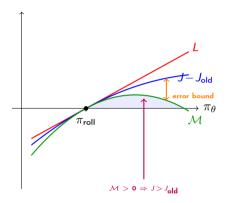
Properties:

- $J(\pi_{\theta}) J(\pi_{\text{roll}}) \geq \mathcal{M}(\pi_{\theta})$ (valid lower bound)
- ② $\mathcal{M}(\pi_{\mathsf{roll}}) = 0$ (tight at reference)

Monotonic Improvement Guarantee:

$$\mathcal{M}(\pi_{\mathsf{new}}) > 0 \implies J(\pi_{\mathsf{new}}) > J(\pi_{\mathsf{roll}})$$

2.6.3 Visualization



Key: The lower bound \mathcal{M} uses the **tighter** of two error bounds. Shaded region = guaranteed improvement.

2.6.4 Comparison with TRPO

TRPO Lower Bound [Schulman et al. 2015]:

$$\mathcal{M}_{\mathsf{TRPO}} = L - C \cdot T^2 \cdot (D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}})^2$$

Our Lower Bound:

$$\mathcal{M}_{\mathsf{new}} = L - \mathsf{min}\left\{ rac{4}{3} \mathcal{T}^{3/2} D^{\mathsf{tok},\mathsf{max}}_{\mathsf{KL}}, \ 2 \mathcal{T} \sqrt{D^{\mathsf{tok},\mathsf{max}}_{\mathsf{KL}} \cdot D^{\mathsf{seq}}_{\mathsf{KL}}}
ight\}$$

Key Improvements:

- **Olympia Better** *T*-scaling: $O(T^{3/2})$ or O(T) vs $O(T^2)$
- Linear in KL: Not quadratic in TV
- **a** Adaptive: Uses tighter of two bounds based on D_{KL}^{seq}

Result (T=4096, $D_{KL}^{tok,max}=10^{-4}$): Error bound 35.0 (PM) or 8.2 (Mixed) vs 1677 (TRPO) — up to $200 \times$ tighter!

2.6.5 The Trust Region Formulation

Maximizing \mathcal{M} is equivalent to:

$$\max_{\pi_{\theta}} L_{\pi_{\mathbf{roll}}}(\pi_{\theta}) \quad \text{s.t.} \quad D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}}\big(\pi_{\theta} \| \pi_{\mathsf{roll}}\big) \leq \delta$$

With constraint $D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} \leq \delta$:

$$\mathcal{M} \geq L - \min \left\{ rac{4}{3} \, T^{3/2} \cdot \delta, \; 2 \, T \sqrt{\delta \cdot D_{\mathsf{KL}}^{\mathsf{seq}}}
ight\}$$

Key Insights for LLM-RL:

- Trust region must constrain $D_{KL}^{\text{tok,max}}$ (worst-case token KL)
- This is a **sequence-level** constraint (cannot be enforced token-by-token)
- Token-level constraints (PPO clipping, token masking) are NOT sufficient

Section III

The Failure of Token-Level Constraints

Why PPO violates the trust region

3.1.1 The PPO Objective

PPO [Schulman et al., 2017] approximates trust regions via ratio clipping:

$$\mathcal{L}^{\mathsf{CLIP}} = \mathbb{E}\left[\sum_{t=1}^{T} \min\left(
ho_t A_t, \, \mathsf{clip}(
ho_t, 1 - \epsilon, 1 + \epsilon) A_t
ight)
ight]$$

Intuition: Clipping ρ_t at each token should limit policy change.

The Assumption: Token-level clipping \Rightarrow sequence-level trust region.

Problem: This assumption fails under systemic mismatch.

3.2.1 The Clipping Asymmetry

The min operator creates asymmetric behavior:

$ ho_t$	A_t	Clipped Term	Selected
$> 1 + \epsilon$	> 0	$(1+\epsilon) A_t$	Clipped (smaller)
$< 1 - \epsilon$	< 0	$(1-\epsilon)A_t$	Clipped (less negative)
$> 1 + \epsilon$	< 0	$(1+\epsilon)A_t$	Unclipped!
$< 1 - \epsilon$	> 0	$(1-\epsilon)A_t$	Unclipped!

Problem: When $\rho_t \gg 1$ and $A_t < 0$, gradient is **not bounded**.

3.2.2 Gradient Leakage Example

Scenario: MoE routing flip causes $\rho_t = 100$, noisy reward gives $A_t = -1$.

- **1** Unclipped: $\rho_t A_t = 100 \times (-1) = -100$
- ② Clipped: $(1 + \epsilon)A_t = 1.2 \times (-1) = -1.2$
- **9** PPO selects: min(-100, -1.2) = -100

Result: Gradient magnitude \propto 100, completely uncontrolled.

Under Systemic Mismatch:

MoE artifacts routinely produce $\rho \gg 1$. Combined with noisy advantages, this injects massive erroneous gradients.

3.3.1 The Token Masking Proposal

Attempted Fix: Mask tokens with excessive divergence.

$$abla pprox \sum_{t=1}^T M_t \cdot
ho_t
abla \log \pi_{ heta}(y_t|x,y_{< t}) \cdot A$$

where $M_t = 0$ if $|\log \rho_t| > \delta$.

Intuition: Remove "bad" tokens from gradient \Rightarrow safe update?

Problem: This does NOT satisfy Section 2's requirements.

3.3.2 The Theoretical Problem

Recall Section 2's Error Bound:

$$|\mathsf{Error}| \leq rac{4}{3} \, T^{3/2} \cdot D^{\mathsf{tok},\mathsf{max}}_{\mathsf{KL}}$$

This bound depends on $D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} = \mathsf{max}_{t,c_t} D_{\mathsf{KL}}^{\mathsf{tok}}(c_t)$ — the worst-case over all contexts in the **sequence**.

If token k has large divergence ($|\log \rho_k| \gg \delta$):

- ullet This indicates $\pi_{ heta}$ and $\pi_{ ext{roll}}$ differ significantly at context c_k
- The sequence's $D_{KL}^{\text{tok,max}}$ is large
- Masking token k changes the gradient we compute
- But $D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}}$ is **unchanged** the divergence still exists!
- Error bound remains vacuous

Key Insight: Token masking changes what we optimize, not the error bound. The theory requires $D_{\mathrm{KL}}^{\mathrm{tok,max}} \leq \delta$ for the **sequence**, not just for tokens we include.

3.4.1 Token-Level Methods Cannot Win

Summary of Failure Modes:

Method	Problem	Theory Satisfied?
Include bad tokens	Gradient Leakage	No
Mask bad tokens	$D_{KL}^{tok,max}$ unchanged	No

Root Cause:

- The error bound requires $D_{\mathrm{KL}}^{\mathrm{tok,max}} \leq \delta$ for the **sequence**
- Token-level operations cannot control sequence-level divergence

The Only Solution:

If ANY token violates the trust region, reject the **entire sequence**.

3.4.2 The Necessity of Sequence Masking

The Theory Requires: $D_{\mathrm{KL}}^{\mathrm{tok,max}} \leq \delta$ for the bound to hold.

The Only Solution: Mask entire sequences where ANY token violates.

$$M(x, y) = \mathbb{I}\left[\max_{t} |\log \rho_t| \leq \delta\right]$$

Why This Works:

- Masked sequences: Contribute 0 to gradient (valid, just zero)
- Accepted sequences: Have $D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} \leq \delta$ (bound applies!)

Contrast with Token Masking:

- Token masking changes the gradient
- But error bound depends on sequence's D_{KL}^{tok,max}
- ullet Masking tokens doesn't reduce $D_{\mathrm{KL}}^{\mathrm{tok,max}}$ the divergence still exists!

Conclusion: Sequence masking is **directly required** by Section 2's theory.

Section IV

Solution: Trust Region Masking

Sequence-level masking with valid gradient estimation

4.1.1 The Hard Trust Region Mask

Definition: Binary sequence mask

$$M(x, y) = \mathbb{I}[(x, y) \in \mathsf{Trust} \; \mathsf{Region}]$$

Modified Objective: We optimize a masked surrogate:

$$L_{\mathsf{masked}} = \mathbb{E}_{\pi_{\mathsf{roll}}}\left[M \cdot A \cdot \sum_{t=1}^{T}
ho_{t}
ight]$$

Gradient Estimator:

$$abla L_{\mathsf{masked}} pprox rac{1}{N} \sum_{i=1}^{N} M_i \sum_{t=1}^{T}
ho_t
abla \log \pi_{ heta}(y_t|x,y_{< t}) \cdot A$$

where $M_i = M(x^{(i)}, y^{(i)})$ and N is batch size.

Key: Divide by N (total batch), not $|\{i: M_i = 1\}|$ (accepted only).

This estimates $\nabla L_{\mathsf{masked}}$, which equals ∇L restricted to the trust region.

4.1.2 Why Sequence Masking Works

What happens to each sequence:

- Masked sequences $(M_i = 0)$:
 - Contribute 0 to gradient
 - This is valid: we choose not to learn from these
 - The bound doesn't need to hold for masked sequences
- Accepted sequences $(M_i = 1)$:
 - \bullet Have $D_{\mathrm{KL}}^{\mathrm{tok,max}} \leq \delta$ by construction
 - ullet Error bound applies with penalty $\propto \delta$
 - Monotonic improvement guarantee holds!

Contrast with Token Masking:

- ullet Token masking: keeps sequence, removes tokens \Rightarrow invalid gradient target
- Sequence masking: removes entire sequence ⇒ valid (just zero contribution)

4.2.1 Two Possible Criteria

Criterion A (Max-based): Mask if $\max_t f(\rho_t) > \delta$

- ullet Directly bounds $D_{\mathrm{KL}}^{\mathrm{tok,max}}$ (what theory requires)
- Length-invariant: max doesn't grow with T

Criterion B (Total-based): Mask if $\sum_t f(\rho_t) > \delta$

- Bounds total divergence
- Length-biased: sum grows linearly with T

Example (per-token $f(\rho) = 0.01$):

	T = 100	T = 4000	Grows with <i>T</i> ?
Max	0.01	0.01	No
Total	1	40	Yes (40×)

Conclusion: Max-based is length-invariant! But what if max is too strict?

4.3.1 Practical Considerations

Max-based masking $(\max_t f(\rho_t) > \delta)$ is theoretically optimal but:

- Single outlier token masks entire trajectory
- Under MoE noise, may mask too many sequences

Practical Alternative: Average-based criterion

$$\frac{1}{T}\sum_{t}f(\rho_{t})>\delta$$

Also length-invariant; more tolerant of occasional outliers.

Divergence Estimators:

- Max: $\hat{D}_{max} = \max_t f(\rho_t)$ detects worst-case divergence
- Avg: $\hat{D}_{avg} = \frac{1}{T} \sum_{t} f(\rho_t)$ estimates D_{KL}^{seq}/T

Choice of $f(\rho)$ depends on criterion:

- For max: Use $|\log \rho|$ (symmetric: detects both $\rho \gg 1$ and $\rho \ll 1$)
- For avg: Use $\rho 1 \log \rho$ (unbiased AND non-negative)

Note: Sample-based methods are approximate detectors, not rigorous bounds.

4.3.2 Recommended Masking Criteria

For Full Theoretical Guarantee (bounds $D_{KL}^{tok,max}$):

$$M(x,y) = \mathbb{I}\left[\hat{D}_{\sf max}(x,y) \leq \delta_{\sf max}\right]$$

For Practical Average-Based Filter:

$$M(x,y) = \mathbb{I}\left[\hat{D}_{\mathsf{avg}}(x,y) \leq \delta_{\mathsf{avg}}\right]$$

Combined (Recommended):

$$M(x,y) = \mathbb{I}\left[\hat{D}_{\sf max} \leq \delta_{\sf max} \; {\sf AND} \; \hat{D}_{\sf avg} \leq \delta_{\sf avg}
ight]$$

- Max criterion: ensures theoretical bound applies
- Average criterion: additional robustness for overall divergence

4.4.1 Connection to Theory

Error bound requires $D_{KL}^{tok,max}$:

$$|\mathsf{Error}| \leq \min \left\{ \frac{4}{3} \, \mathcal{T}^{3/2} \cdot D^{\mathsf{tok},\mathsf{max}}_{\mathsf{KL}}, \, \, 2 \, \mathcal{T} \sqrt{D^{\mathsf{tok},\mathsf{max}}_{\mathsf{KL}} \cdot D^{\mathsf{seq}}_{\mathsf{KL}}} \right\}$$

Max-based criterion directly bounds this: $\max_t D_{\mathsf{KL}}(c_t) \leq \delta \Rightarrow D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} \leq \delta$ Exact vs Sample-Based Divergence:

- Exact: $D_{\text{KL}}(c_t) = \sum_{v} \pi_{\text{roll}}(v|c_t) \log \frac{\pi_{\text{roll}}(v|c_t)}{\pi_{\theta}(v|c_t)}$ requires stored logits, **rigorous guarantee**
- Sample-based: $f(\rho_t) = \rho_t 1 \log \rho_t$ unbiased estimator, approximate guarantee

Key Properties:

- Threshold δ is **length-invariant**
- Bounds hold for reverse KL via Pinsker symmetry

4.5.1 TRM Algorithm

Trust Region Masking (TRM):

Require: Divergence function f; thresholds δ_{max} , δ_{avg} ; batch $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$

- 1: **for** each $(x, y) \in \mathcal{D}$ **do**
- 2: Compute $\rho_t = \pi_{\theta}(y_t|x, y_{< t})/\pi_{\text{roll}}(y_t|x, y_{< t})$ for all t
- 3: Compute max divergence: $\hat{D}_{max} = max_t f(\rho_t)$
- 4: (Optional) Compute average: $\hat{D}_{avg} = \frac{1}{T} \sum_{t} f(\rho_t)$
- 5: Set mask: $M_i = \mathbb{I}[\hat{D}_{\sf max} \leq \delta_{\sf max}]$ (and optionally $\hat{D}_{\sf avg} \leq \delta_{\sf avg}$)
- 6: end for
- 7: Compute gradient (divide by N, not $|\{i: M_i = 1\}|$):

$$abla L_{\mathsf{masked}} = rac{1}{N} \sum_{i=1}^N M_i \cdot A^{(i)} \cdot \sum_{t=1}^T
ho_t^{(i)}
abla \log \pi_{ heta}(y_t^{(i)}|\mathbf{x}^{(i)}, y_{< t}^{(i)})$$

8: Update: $\theta \leftarrow \theta + \alpha \nabla L_{\mathsf{masked}}$

Note: For $f(\rho)$ choices, see slide 4.3.3 and Appendix A.1–A.2.

4.5.2 Theoretical Guarantees

Key: $D_{\mathsf{KL}}(\pi_{\mathsf{roll}} || \pi_{\theta})$ is Exactly Computable

- Following TRPO, we use $D_{\mathsf{KL}}(\pi_{\mathsf{roll}}(\cdot|c_t) \| \pi_{\theta}(\cdot|c_t))$
- Computed as: $KL(softmax(roll), log_softmax(\theta))$
- This is the natural choice: expectation over π_{roll} (from which we sample)

TRM Guarantee:

- **3 Bounded Divergence:** $\max_t D_{\mathsf{KL}}(\pi_{\mathsf{roll}}(\cdot|c_t)||\pi_{\theta}(\cdot|c_t)) \leq \delta$ (exactly verifiable)
- Improvement Bound:

$$\mathcal{M} = \mathcal{L} - \min \left\{ rac{4}{3} \mathcal{T}^{3/2} \cdot \delta, \ 2 \mathcal{T} \sqrt{\delta \cdot D_{\mathsf{KL}}^{\mathsf{seq}}}
ight\}$$

Numerical Example (T = 4096, $\delta = 10^{-4}$, $D_{KL}^{seq} = 0.01$):

• Error bounds: 35.0 (PM), 8.2 (Mixed) vs 1677 (classical) — non-vacuous!

References

- Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning. Machine Learning.
- Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy Gradient Methods for RL with Function Approximation. NeurIPS.
- Kakade, S. & Langford, J. (2002). Approximately Optimal Approximate Reinforcement Learning. ICML.
- Cover, T. M. & Thomas, J. A. (2006). Elements of Information Theory. Wiley.
- Schulman, J., Levine, S., Moritz, P., Jordan, M., & Abbeel, P. (2015). Trust Region Policy Optimization. ICML.
- Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347.

Appendix

A.1 The k_3 Estimator: Why It's Ideal for Averaging

Problem with $k_1 = -\log \rho$: Can be negative when $\rho > 1$.

Extreme ratios cancel: $-\log(0.01) + (-\log(100)) = 4.61 - 4.61 = 0$

Solution: Use $k_3(\rho) = \rho - 1 - \log \rho$

Three Key Properties for Averaging:

- **① Unbiased:** $\mathbb{E}_{y \sim \pi_{roll}}[k_3(\rho)] = D_{\mathsf{KL}}(c_t)$ exactly
- **2** Non-negative: $k_3(\rho) \ge 0$ for all $\rho > 0 \Rightarrow$ no cancellation
- **Quantification** Calibrated asymmetry: High k_3 when $\rho\gg 1$ is compensated by low $P(\rho\gg 1)$ under $\pi_{\rm roll}$

Result: $(1/T)\sum_t k_3(\rho_t) \to D_{KL}^{\text{seq}}/T$ by law of large numbers

Contrast: $-\log \rho$ is unbiased but cancels; $|\log \rho|$ is non-negative but biased.

A.2 Why $|\log \rho|$ for Max, k_3 for Average

ρ	k ₃	$ \log ho $	Interpretation
0.01	3.6	4.61	$\pi_{ heta}$ assigns low prob $\pi_{ heta}$ assigns high prob
100	94.4	4.61	

For MAX criterion: Need symmetric detection!

- Both $ho \ll 1$ and $ho \gg 1$ indicate large $D_{
 m KL}^{
 m tok}$
- $|\log
 ho|$: Detects both equally (4.61 = 4.61) \checkmark
- k_3 : Misses $ho \ll 1$ if threshold set for $ho \gg 1 imes$

For AVERAGE criterion: Need unbiased + non-negative!

- k_3 : Unbiased ($\mathbb{E}[k_3] = D_{\mathsf{KL}}$) AND non-negative \checkmark
- ullet $\log
 ho$: Unbiased but cancellation when summing imes
- $|\log \rho|$: Non-negative but biased \times

Caveat: Sample-based methods are approximate detectors, not rigorous bounds.

A.3 Proof Sketch: Performance Difference Identity

Goal: Show $J(\pi_{\theta}) - J(\pi_{\text{roll}}) = \sum_{t} \mathbb{E}_{d_t^{\pi_{\theta}}}[g_t]$. **Step 1:** Telescope over timesteps.

$$egin{aligned} J(\pi_{ heta}) &= \mathbb{E}_{d_{\mathbf{1}}^{\pi_{ extsf{roll}}}}[V_{1}^{\pi_{ extsf{roll}}}] + \sum_{t=1}^{T} \mathbb{E}_{d_{t}^{\pi_{ heta}}}\left[\mathbb{E}_{\pi_{ heta}}[Q_{t}^{\pi_{ extsf{roll}}} - V_{t}^{\pi_{ extsf{roll}}}]
ight] \ &= V^{\pi_{ extsf{roll}}}(x) + \sum_{t=1}^{T} \mathbb{E}_{d_{t}^{\pi_{ heta}}}[g_{t}] \end{aligned}$$

Step 2: Note $J(\pi_{roll}) = V^{\pi_{roll}}(x)$.

Step 3: Subtract to get:

$$J(\pi_{ heta}) - J(\pi_{\mathsf{roll}}) = \sum_{t=1}^T \mathbb{E}_{oldsymbol{d}_t^{\pi_{oldsymbol{ heta}}}}[g_t]$$

See Kakade & Langford (2002) for complete proof.

A.4 Connecting Trajectory and Per-Step Advantages

Per-step advantage (used in PDI): $A_t^{\pi_{\text{roll}}}(x, y_{\leq t}) = Q^{\pi_{\text{roll}}}(x, y_{\leq t}) - V^{\pi_{\text{roll}}}(x, y_{< t})$ Trajectory advantage (used in surrogate): A = R(x, y) - b (same for all t)

Key Identity: For terminal reward: $\sum_{t=1}^{T} A_t = R - \mathbb{E}_{\pi_{roll}}[R]$ (telescope)

Surrogate Equivalence: $L = \mathbb{E}_{\pi_{\mathsf{roll}}}[\sum_t \rho_t A_t] = \sum_t \mathbb{E}_{d_t^{\pi_{\mathsf{roll}}}}[g_t]$

Proof sketch:

$$\begin{split} L &= \sum_{t=1}^{T} \mathbb{E}_{c_{t} \sim d_{t}^{\pi_{\text{roll}}}} \left[\mathbb{E}_{y_{t} \sim \pi_{\text{roll}}} \left[\frac{\pi_{\theta}(y_{t}|c_{t})}{\pi_{\text{roll}}(y_{t}|c_{t})} A_{t} \right] \right] \\ &= \sum_{t=1}^{T} \mathbb{E}_{c_{t} \sim d_{t}^{\pi_{\text{roll}}}} \left[\mathbb{E}_{y_{t} \sim \pi_{\theta}} [A_{t}] \right] = \sum_{t=1}^{T} \mathbb{E}_{d_{t}^{\pi_{\text{roll}}}} [g_{t}] \end{split}$$

Using trajectory advantage A = R - b is a practical simplification maintaining first-order validity.

A.6 Derivation: Simulation Lemma Bound

Claim: $\|d_t^{\pi_\theta} - d_t^{\pi_{\mathsf{roll}}}\|_{TV} \leq (t-1) \cdot D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}}$

Proof by Induction:

Base: t = 1: $d_1^{\pi_{\theta}} = d_1^{\pi_{\text{roll}}} = P(x)$, so $\|d_1^{\pi_{\theta}} - d_1^{\pi_{\text{roll}}}\|_{TV} = 0$. \checkmark Inductive Step:

$$d_{t+1}^{\pi}(x, y_{\leq t}) = d_{t}^{\pi}(x, y_{< t}) \cdot \pi(y_{t}|x, y_{< t})$$

Using the coupling bound $||PQ - P'Q'||_{TV} \le ||P - P'||_{TV} + ||Q - Q'||_{TV}$:

$$\begin{split} \|d^{\pi_{\theta}}_{t+1} - d^{\pi_{\mathsf{roll}}}_{t+1}\|_{\mathit{TV}} &\leq \|d^{\pi_{\theta}}_{t} - d^{\pi_{\mathsf{roll}}}_{t}\|_{\mathit{TV}} + D^{\mathsf{tok},\mathsf{max}}_{\mathsf{TV}} \\ &\leq (t-1) \cdot D^{\mathsf{tok},\mathsf{max}}_{\mathsf{TV}} + D^{\mathsf{tok},\mathsf{max}}_{\mathsf{TV}} = t \cdot D^{\mathsf{tok},\mathsf{max}}_{\mathsf{TV}} \end{split}$$

Hence $||d_{t+1}||_{TV} \leq t \cdot D_{TV}^{\text{tok,max}}$, completing the induction.

A.7 Why KL Has a Chain Rule But TV Doesn't

KL Chain Rule (EQUALITY):

$$D_{\mathsf{KL}}(d_t^{\pi_{\mathsf{roll}}} \| d_t^{\pi_{\theta}}) = \sum_{s=1}^{t-1} \mathbb{E}_{c_s \sim d_s^{\pi_{\mathsf{roll}}}} \left[D_{\mathsf{KL}}^{\mathsf{tok}}(c_s) \right]$$

This is an exact equality due to the logarithmic structure of KL.

TV Simulation Lemma (INEQUALITY):

$$\|d_t^{\pi_{ heta}} - d_t^{\pi_{ extsf{roll}}}\|_{\mathsf{TV}} \leq \sum_{t=1}^{t-1} D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}} = (t-1) \cdot D_{\mathsf{TV}}^{\mathsf{tok},\mathsf{max}}$$

This is only an **upper bound** — TV has no equality chain rule.

Key Insight:

- KL accumulates: $D_{\mathsf{KL}}(d_t^{\pi_{\mathsf{roll}}} \| d_t^{\pi_{\theta}}) \leq (t-1) \cdot D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}}$
- Apply Pinsker: $\|d_t^{\pi_\theta} d_t^{\pi_{\mathsf{roll}}}\|_{\mathsf{TV}} \leq \sqrt{(t-1) \cdot D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}}/2}$
- The $\sqrt{\cdot}$ converts **linear** KL to \sqrt{t} TV growth!

This trick is **impossible with TV alone** — we need KL's equality chain rule.

A.8 Why No Pure D_{KI}^{seq} Bound Exists

The Issue: The bound $|g_t(c_t)| \leq 2D_{TV}^{tok}(c_t)$ is **context-dependent**.

To get $||g_t||_{\infty}$, we must take max: $||g_t||_{\infty} \leq 2D_{\text{TV}}^{\text{tok,max}}$

Can we bound $D_{TV}^{\text{tok,max}}$ (or $D_{KL}^{\text{tok,max}}$) in terms of D_{KL}^{seq} ?

Counterexample: At one rare context c^* :

- ullet $D_{\mathsf{KL}}^{\mathsf{tok}}(c^*) = 1$, and $D_{\mathsf{KL}}^{\mathsf{tok}}(c_t) = 0$ for all $c_t
 eq c^*$
- Probability $\Pr(c^*) = \epsilon$ under $d_t^{\pi_{\text{roll}}}$

Then:

- ullet $D_{\mathsf{KL}}^{\mathsf{tok},\mathsf{max}} = 1$ (fixed, regardless of ϵ)
- ullet $D_{ ext{KL}}^{ ext{seq}} pprox \epsilon$ (can be arbitrarily small!)

Conclusion: There is NO function f such that $D_{KL}^{\text{tok},\text{max}} \leq f(D_{KL}^{\text{seq}})$.

This is why our bounds **must** involve $D_{KL}^{tok,max}$.