Q[⋆] meets Thompson Sampling: Scaling up Exploration via HyperAgent

With application in Human-AI Alignment and Collaboration

Yingru Li

https://richardli.xyz/

June 25, 2024

Motivation: RL under Resource Constraints

Existing solution and their limitations

Our Contributions

HyperAgent for Efficient RL [LXHL24] (ICML)

Theoretical insights with tabular representation Empirical evidence on efficient deep exploration with deep RL Reduce **sequential posterior approx**, to sequential random projection

GPT-HyperAgent for Continual Content Moderation

Motivation: RL under Resource Constraints

Reinforcement Learning Problem

Agent-Environment Interface.

Interactive Experience:

$$A_0, S_1, A_1, S_2, \ldots, A_t, S_{t+1}, \ldots$$

Environment M = (S, A, P)▶ State $S_{t+1} \sim P(\cdot | S_t, A_t)$ for t = 0, 1, ...

Agent($\mathcal{S}, \mathcal{A}, r, \mathcal{D}_t$) $\rightarrow \pi_t \max$ long-term rewards

- ▶ Reward $R_{t+1} = r(S_t, A_t, S_{t+1})$ preference ▶ Data $D_t = D_{t-1} \cup \{A_{t-1}, S_t\}$ accumulated.

• Policy
$$\pi_t = \operatorname{Agent}(\mathcal{S}, \mathcal{A}, r, \mathcal{D}_t).$$

- Action $A_t \sim \pi_t(\cdot \mid S_t)$:
- **Objective** $\pi_{\text{agent}} = (\pi_0, \pi_1, \ldots)$ to maximize

$$\mathbb{E}[\sum_{t=0}^{T-1} R_{t+1} \mid \pi_{\text{agent}}, M] .$$
 (1)

Motivation: RL under Resource Constraints

Agent-Environment Interface.

Interactive Experience:

$$\underbrace{A_0, S_1, A_1, S_2, \ldots, A_t, S_{t+1}, \ldots}_{\mathcal{D}}$$

Complex Environment:

- ▶ $|S| \approx 10^{100}$ Large state space
 - language, vision & audios, etc.
- **b** $|\mathcal{D}|$ \uparrow **Data accumulates** as interacting.

Resource Constraints for Agent:

- Bounded Per-step Computation & Memory
 - e.g., Real-time decision-making in online recommendation systems [ZVR23].
- Limited Data Collection Budgets
 - e.g., Human feedback in LLMs [DAHVR24].
 - e.g., Scientific experimental design

Distributed Continual Content Moderation: Human-AI Collaboration

Content Moderation:

- Safe Alignment: Filter out harmful content according to human value.
- ► Challenges 1: Natural language input, etc → Large |S|
- Challenges 2: Real-time Safe Critical decision-making
 - Adapting fast from limited human feedback while keeping track of the ongoing data stream |D|.
- Challenges 3: Partial feedback
 - Only published content is available for feedback from crowd-sourced systems.

Motivation: RL under Resource Constraints

Motivation: RL under Resource Constraints

Existing solution and their limitations

Our Contributions

HyperAgent for Efficient RL [LXHL24] (ICML)

Theoretical insights with tabular representation Empirical evidence on efficient deep exploration with deep RL Reduce **sequential posterior approx**, to sequential random projection

GPT-HyperAgent for Continual Content Moderation

Development of RL Algorithms: A History of "Scale up!"

- ▶ Per-step $O(\text{poly}(|\mathcal{S}|)) \Rightarrow$ Function Approximation (FA), e.g. Neural Networks; (70s 90s)
- ▶ Per-step $O(\text{poly}(|\mathcal{D}|)) \Rightarrow$ Incremental Update with SGD, Replay Buffer and/or Target Network.
- FA + Incremental Update \Rightarrow Bounded $\tilde{O}(1)$ Per-step Complexity \Rightarrow Scalable algorithm. (10s -)

Algorithm	Components		
DDQN (16)	Incremental SGD with experience replay (finite buffer) and target network		
Rainbow <mark>(18)</mark>	(DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.		
	(DDQN) + Prioritized replay, Dueling networks, Distributional RL,		
DDF (23)	Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.		

Table: Components in STOA algorithms, e.g. DDQN [VHGS16], Rainbow [HMVH+18], BBF [SCC+23].

- **Scalable**: e.g. DDQN use incremental SGD with experience replay and target network.
- > X Deployment inefficient: Complicated components and many heuristics. Hard to tune.
- X Data inefficient: e.g. BBF use *e*-greedy exploration strategy which suffer linear regret in some environment, provably [Kak03, Str07, OVRRW19, DMM⁺22]. In practice, deep RL data hungury.

Goal: Sequential decision-making under uncertainty with sublinear regret.

Data Efficient Exploration

Posterior Sampling Reinforcement Learning (PSRL): data-efficient exploration strategy

- **Require**: Prior distribution $\mathbb{P}(M \in \cdot)$ for underlying model *M*.
- For each episode ℓ , denote t_{ℓ} the beginning time step
 - Sample $\hat{M}_{\ell} \sim \mathbb{P}\left(M \in \cdot \mid \mathcal{D}_{t_{\ell}}\right)$.
 - **Return** the optimal policy $\pi_{\ell} = \pi^{\hat{M}_{\ell}}$ under \hat{M}_{ℓ} .

- Require conjugacy for tractable posterior update (uncertainty estimation).
- **Only feasible** in simple environments:
 - Tabular MDP with dirichlet prior [Str00, OVR17] $\tilde{O}(H^2\sqrt{SAK})$ regret sublinear in K episodes.
 - Linear-Gaussian bandit [RVR16, RVRK+18] $O(d\sqrt{T \log A})$ regret sublicar in T time steps.

Data Efficient Exploration under Function Approximation (FA)

X Intractable Computation in Posterior Sampling:

Model-based: No conjugacy for exact Bayesian inference for posterior over transition models.

- [LL24] (AISTATS): First prior-dependent bound under FA and improved prior-free bound in the context of linear mixture MDPs.
- Model-free: Beyond conjugacy, sample from intricate distribution over value functions [Zha22, DMZZ21, ZXZ⁺22]

X Unbounded Per-step Complexity $poly(|\mathcal{D}|)$ in Approximate Posterior Sampling:

- Store entire history and retrain for each episode, e.g. RLSVI [OVRRW19], LSVI-PHE [ICN+21].
- Langevin Monte-Carlo (LMC) based methods [XZM⁺22, ILX⁺24]
- Same issues for OFU: (1) X Intractability [JKA⁺17, JLM21, DKL⁺21, FKQR21, LLX⁺23];
 (2) X Unbounded resource demands as data accumulates [WSY20, AJZ23].

Ensemble Sampling for Approximate Posterior Sampling

- Ensemble Sampling (ES): approximate the posterior distribution by uniformly sampling from a set of ensemble models. E.g., BootstrapDQN [OBPVR16], Ensemble+ [OAC18, OVRRW19].
- ✓ Each ensemble perform incremental update, no retraining.
- **\checkmark Computationally expensive** in practice: say, update > 100 neural networks for each time step.
- **X** No rigorous understanding in terms of statistical and computational complexity.

Motivation: RL under Resource Constraints

Existing solution and their limitations Our Contributions

HyperAgent for Efficient RL [LXHL24] (ICML)

Theoretical insights with tabular representation Empirical evidence on efficient deep exploration with deep RL Reduce **sequential posterior approx**, to sequential random projection

GPT-HyperAgent for Continual Content Moderation

Our HyperAgent [LXHL24] aims to ...

Existing solution and their limitations

Our Contributions

Algorithm	Components		
DDQN (16)	Incremental SGD with experience replay (finite buffer) and target network		
Rainbow <mark>(18)</mark>	(DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.		
	(DDQN) + Prioritized replay, Dueling networks, Distributional RL,		
DDF (23)	Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.		
HyperAgent	(DDQN) + Hypermodel		

Table: Techniques used in different algorithms, e.g. DDQN [VHGS16], Rainbow [HMVH⁺18], BBF [SCC⁺23] and our HyperAgent.

- Simple: Only one additional component, hypermodel, compatiable with all feedforward DNN.
 - \Rightarrow Easy to deploy empirically.
- Scalable: Incremental SGD under DNN function approximation, same as DDQN;
 - \Rightarrow bounded per-step computation.

Existing solution and their limitations | Our Contributions

How much data and parameters to achieve Human-level performance (1 IQM) in Atari suite?

- ✓ Data efficient: only 15% data consumption of DDQN[VHGS16] by DeepMind. (1.5M interactions)
- Computation efficient: only 5% model parameters of BBF[SCC⁺23] by DeepMind.
- Ensemble+ [OAC18, OVRRW19] achieves a mere 0.22 IQM score under 1.5M interactions but necessitates double the parameters of HyperAgent.

Practice in Deep RL				Theory in Tabular RL	
Algorithm	Tractable	Incremental	Efficient	Regret	Per-step Computation
PSRL	×	×	×	$\tilde{O}(H^2\sqrt{SAK})$	$O(S^2A)$
RLSVI	1	×	×	$\tilde{O}(H^2\sqrt{SAK})$	$O(S^2A)$
Ensemble+	1	1	•	N/A	N/A
HyperAgent	 ✓ 	1	1	$\tilde{O}(H^2\sqrt{SAK})$	$\tilde{O}(\log(K)SA + S^2A)$

HyperAgent not only demonstrates superior empirical performance in deep RL benchmarks

but also achieves theoretical milestones, i.e., the first method to achieve Õ(log K) per-step computation & near-optimal regret in tabular K-episodic RL among practically scalable algorithms.

Preview of Contributions - For Practitioners & Theoretists

Algorithmic Mechanism

- Value-based approximate posterior sampling via hypermodel and index sampling schemes.
- $\blacktriangleright \Rightarrow \textbf{Near-optimal regret bound} \Rightarrow \textbf{Data-efficient Exploration}$

Key Lemma

- Incremental approximation of posteriors over value function without conjugacy.
- \blacktriangleright \Rightarrow Logarithmic per-step computation complexity \Rightarrow Scalable Uncertainty Estimation.

↑

≙

- Fundamental Tools for dynamic (non-i.i.d.) data: First Probability Tool for Sequential Random Projection – a non-trivial martingale extension of Johnson-Lindenstrauss (JL). [Li24a]
- Fundamental Tools for static data: Simple, Unified JL analysis that covers existing and new JL construction that traditional analysis cannot handle. [Li24b]

Motivation: RL under Resource Constraints

Existing solution and their limitations

Our Contributions

HyperAgent for Efficient RL [LXHL24] (ICML)

Theoretical insights with tabular representation Empirical evidence on efficient deep exploration with deep RL Reduce **sequential posterior approx**. to sequential random projection

GPT-HyperAgent for Continual Content Moderation

HyperAgent: Introducing Hypermodel

 Paramatric function
 Reference distribution

 Hypermodel:
 f_{θ} P_{ξ}) s.t.

Index Sampling: $f_{\theta}(x, \xi)$ is an (approximate) posterior predictive sample on data x. Index sample $\xi \sim P_{\xi}$

Example: predictive sampling from Linear-Gaussian model

- Suppose $heta^* \sim N(\mu, m{\Sigma})$ where $m{\Sigma}$ represent the model uncertainty.
- Box-Muller Transform: $P_{\xi} = N(0, I_M), \ \theta = (\mathbf{A} \in \mathbb{R}^{d \times M}, \mu \in \mathbb{R}^d)$

 $\boldsymbol{\xi} \sim P_{\boldsymbol{\xi}} \Rightarrow f_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{\xi}) := \langle \boldsymbol{x}, \boldsymbol{\mu} + \boldsymbol{A}\boldsymbol{\xi} \rangle \sim N(\boldsymbol{x}^{\top}\boldsymbol{\mu}, \boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{A}^{\top}\boldsymbol{x})$

- Uncertain Estimation: Find A s.t. $AA^{\top} = \Sigma$. $\Rightarrow f_{\theta}(x,\xi) \sim \langle \theta^*, x \rangle$.

Similar concept in [LLZ⁺22] (ICLR) & [DLI⁺20, OWA⁺23a]

Sampling from Linear-Gaussian model $N(x^{\top}\mu, x^{\top}\Sigma x)$, we could perform

Ensemble Sampling (# of models *M*) $P_{\xi} = \mathcal{U}\{e_1, \dots, e_M\}$ and $\theta = \mathbf{A} = [\tilde{\theta}_1, \dots, \tilde{\theta}_M] \in \mathbb{R}^{d \times M}$, s.t. $\tilde{\theta}_m \sim N(\mu, \Sigma)$. $\xi \sim P_{\xi} \Rightarrow f_{\theta}(x, \xi) := \langle x, A\xi \rangle$ where $A\xi \rangle \sim \mathcal{U}\{\tilde{\theta}_1, \dots, \tilde{\theta}_M\}$

Histogram approximation:

•
$$\tilde{\mu} = \mathbb{E}[A\xi \mid A] = \frac{1}{M} \sum_{i=1}^{M} \tilde{\theta}_i \to \mu$$
 as $M \uparrow$.

►
$$\operatorname{Cov}[A\xi \mid A] = \frac{1}{M} \sum_{i=1}^{M} (\tilde{\theta}_i - \tilde{\mu}) (\tilde{\theta}_i - \tilde{\mu})^\top \to \Sigma$$
 as $M \uparrow$.

Problem: $M \uparrow$ leads to **unbounded computation**.

HyperAgent: Hypermodel for Feedforward Deep Networks

• Base model: DNN $\langle \phi_w(\cdot), w_{\text{predict}} \rangle$

► Hypermodel: [LXHL24] chooses $f_{\theta}(x,\xi) = \langle \phi_w(x), w_{\text{predict}}(\xi) \rangle$ with $w_{\text{predict}}(\xi) = A\xi + b$

$$f_{\theta}(x,\xi) = \underbrace{\langle \phi_{w}(x), b \rangle}_{\text{'mean'} \ \mu_{\theta}(x)} + \underbrace{\langle \phi_{w}(x), A\xi \rangle \rangle}_{\text{'variance'} \ \sigma_{\theta}(x,\xi)}$$

$$\uparrow \text{The degree of uncertainty}$$

HyperAgent: Hypermodel for Deep RL

Base model for DQN-type value function

$$f_{\theta}(s,a) = \langle \phi_w(s) , \theta^{(a)} \rangle$$

with parameters $\theta = \{w, (\theta^{(a)} \in \mathbb{R}^d) : a \in \mathcal{A}\}$

Action-specific parameters for discrete action set ${\cal A}$

Hypermodel for randomized value function depends on (s, a) and a random index $\xi \sim P_{\xi}$:

$$f_{\theta}(s, a, \xi) = \langle \phi_{w}(s), \underbrace{A^{(a)}\xi + b^{(a)}}_{\theta^{(a)}(\xi)} \rangle$$
Random index $\xi \sim P_{\xi}$

with parameters
$$\theta = \{w, (A^{(a)} \in \mathbb{R}^{d \times M}, b^{(a)}) : a \in \mathcal{A}\}.$$

Tabular representation: $\phi_w(s)$ is fixed one-hot vector in $\mathbb{R}^{|S|}$ where d = |S|. (Unification!)

Algorithm HyperAgent Framework

- 1: Input: Initial parameter θ_{init} , hypermodel f_{θ} with reference dist. P_{ξ} and perturbation dist. P_{z} .
- 2: Init. $\theta = \theta^- = \theta_{\text{init}}$, train step j = 0 and buffer D
- 3: for each episode $k = 1, 2, \ldots$ do
- 4: Sample index mapping $\boldsymbol{\xi}_k \sim P_{\boldsymbol{\xi}}$
- 5: Set t=0 and Observe $\overline{S_{k,0}}\sim
 ho$
- 6: repeat

7: Select
$$A_{k,t} = \arg \max_{a \in \mathcal{A}} f_{\theta}(S_{k,t}, a, \boldsymbol{\xi}_k(S_{k,t}))$$

- 8: **Observe** $S_{k,t+1}$ from environment and $R_{k,t+1} = r(S_{k,t}, A_{k,t}, S_{k,t+1})$.
- 9: Sample perturbation random vector $\mathbf{z}_{k,t+1} \sim P_{\mathbf{z}}$

10:
$$D.add((S_{k,t}, A_{k,t}, R_{k,t+1}, S_{k,t+1}, \mathbf{z}_{k,t+1}))$$

11: Increment step counter $t \leftarrow t + 1$

12:
$$\theta, \theta^-, j \leftarrow \text{update}(D, \theta, \theta^-, \boldsymbol{\xi}^- = \boldsymbol{\xi}_k, t, j)$$

13: **until** $S_{k,t} = s_{\text{terminal}}$ 14: **end for**

HyperAgent: Objective for Generic Hypermodel (f_{θ}, P_{ξ})

from P_{ξ} , all of which are **independent** with ξ .

• Integrate ξ over Equation (2) yields objective $L^{\gamma,\sigma,\beta}$ where $\beta \ge 0$ is for the prior regularization

$$L^{\gamma,\sigma,\beta}(\theta;\theta^{-},\boldsymbol{\xi}^{-},D) = \mathbb{E}_{\boldsymbol{\xi}\sim P_{\boldsymbol{\xi}}}\left[\sum_{d\in D} \frac{1}{|D|}\ell^{\gamma,\sigma}(\theta;\theta^{-},\boldsymbol{\xi}^{-},\boldsymbol{\xi},d)\right] + \frac{\beta}{|D|}\|\theta\|^2$$
(3)

Optimize main objective Equation (3) using mini-batch SGD (default Adam), i.e., sampled loss

$$\tilde{L}(\theta; \theta^{-}, \boldsymbol{\xi}^{-}, \boldsymbol{\tilde{D}}) = \frac{1}{|\boldsymbol{\tilde{\Xi}}|} \sum_{\boldsymbol{\xi} \in \boldsymbol{\tilde{\Xi}}} \left(\sum_{d \in \boldsymbol{\tilde{D}}} \frac{1}{|\boldsymbol{\tilde{D}}|} \ell^{\gamma, \sigma}(\theta; \theta^{-}, \boldsymbol{\xi}^{-}, \boldsymbol{\xi}, d) \right) + \frac{\boldsymbol{\beta}}{|\boldsymbol{D}|} \|\theta\|^{2}$$
(4)
a batch of data $\boldsymbol{\tilde{D}}$ sampled from \boldsymbol{D} a batch of indices $\boldsymbol{\tilde{\Xi}}$ sampled from $P_{\boldsymbol{\xi}}$

▶ Update the main parameters θ in each step according to Equation (4), and updates the target parameters θ^- periodically with less frequency. \Rightarrow Bounded per-step computation.

Motivation: RL under Resource Constraints

Existing solution and their limitations

Our Contributions

HyperAgent for Efficient RL [LXHL24] (ICML)

Theoretical insights with tabular representation

Empirical evidence on efficient deep exploration with deep RL Reduce **sequential posterior approx**. to sequential random projection

GPT-HyperAgent for Continual Content Moderation

Theoretical Understanding via Unified Representation and Algorithm

- **Tabular** representation: $\phi_w(s)$ is fixed one-hot vector in $\mathbb{R}^{|S|}$ where d = |S|. (Unification!)
- Tabular HyperAgent: short notations

$$f_{\theta}(s, a, \boldsymbol{\xi}) = \langle \boldsymbol{\phi}_{w}(s), A^{(a)}\boldsymbol{\xi} + b^{(a)} \rangle$$
$$= \langle \underbrace{(A^{(a)})^{\top}\boldsymbol{\phi}_{w}(s)}_{\boldsymbol{\tilde{m}}_{sa}} + \underbrace{(b^{(a)})^{\top}\boldsymbol{\phi}_{w}(s)}_{\boldsymbol{\mu}_{sa}}, \boldsymbol{\xi} \rangle$$

- ▶ Parameters in *k*-th episode $\theta_k = (\mu_{k,sa}, \tilde{m}_{k,sa} \in \mathbb{R}^M, \forall (s, a) \in S \times A).$
- $\phi_w(s)$ fixed mapping, e.g. tabular and linear FA.
- \blacktriangleright \Rightarrow Equation (3) of HyperAgent permits closed-form solution.
 - HyperDQN [LLZ⁺22] & ENN-DQN[OWA⁺23b] can **not** derive closed-form solution.

Insights from closed-form solution

► Incremental update with computation complexity O(M): $\vec{m}_{k,sa} = \frac{(N_{k-1,sa} + \beta) \vec{m}_{k-1,sa} + \sum_{t \in E_{k-1,sa}} \sigma \mathbf{z}_{\ell,t+1}}{(N_{k,sa} + \beta)} \in \mathbb{R}^{M} \quad (5)$ Visitation counts of (s,a) up to episode $k \uparrow$

Lemma 1 (Sequential posterior approximation via incremental update).

For \tilde{m}_k recursively defined in Equation (5) with $\mathbf{z} \sim \mathcal{U}(\mathbb{S}^{M-1})$. For any $k \ge 1$, define the good event of ε -approximation

$$\mathcal{G}_{k,sa}(\varepsilon) := \left\{ \| \left\| \widetilde{m}_{k,sa} \right\|^2 \in \left((1-\varepsilon) \left\| \frac{\sigma^2}{N_{k,sa} + \beta} \right\|, (1+\varepsilon) \left\| \frac{\sigma^2}{N_{k,sa} + \beta} \right\| \right) \right\}.$$

The joint event $\cap_{(s,a)\in\mathcal{S}\times\mathcal{A}}\cap_{k=1}^{K}\mathcal{G}_{k,sa}(\varepsilon)$ holds w.p. at least $1-\delta$ if $M\simeq\varepsilon^{-2}\log(SAHK/\delta)$.

Insights from closed-form solution

Stochastic Bellman Operator F_k^{γ} induced by Equation (3) w. $\theta = \theta_k^{(i+1)}, \theta^- = \theta_k^{(i)}$ iteratively :

$$f_{\theta_{k}^{(i+1)},\xi_{k}} = F_{k}^{\gamma} f_{\theta_{k}^{(i)},\xi_{k}} \approx (r_{sa} + \gamma \langle V_{f_{\theta_{k}^{(i)},\xi_{k}}}, \hat{P}_{k,sa} \rangle) + \tilde{m}_{k,sa}^{\top} \xi_{k}(s) , \qquad (6)$$

$$\underbrace{\text{Empirical transition}}_{\text{Comparison}} \langle \sqrt{\frac{1}{N_{k,sa}}} \rangle = \frac{1}{N_{k,sa}} \left(\sqrt{\frac{1}{N_{k,sa}}} \right) + \frac{1}{N_{k,sa}} \left(\sqrt{$$

where $f_{\theta,\xi^-}(s,a) = f_{\theta}(s,a,\xi^-(s))$ and $V_Q(s) := \max_a Q(s,a), \forall s$ is the greedy value w.r.t. Q.

Setup: $N_{k,(4,\sum)} = 1$. Other (s, a) almost infinite data. (1) Propagation of uncertainty from later time period to earlier time period due to **iterative applying** F_k^{γ} . (2) Darker shade indicates higher degree of uncertainty. (3) Incentivize deep exploration.

Motivation: RL under Resource Constraints

Existing solution and their limitations

Our Contributions

HyperAgent for Efficient RL [LXHL24] (ICML)

Theoretical insights with tabular representation

Empirical evidence on efficient deep exploration with deep RL

Reduce sequential posterior approx. to sequential random projection

GPT-HyperAgent for Continual Content Moderation

Simple Illustration for Deep Exploration: DeepSea Environment

DeepSea: The agent receives a reward of 0 for \checkmark , and a penalty of -(0.01/N) for \searrow , where N denotes the size of DeepSea. The agent will earn a reward of 1 upon reaching the lower-right corner but she do NOT know in advances whether there is a reward until reaching the goal.

exploration method	expected episodes to learn		
optimal	$\Theta(N)$		
pure exploitation	$^{\infty}$		
dithering (ϵ -greedy)	$\Theta(2^N)$		
optimistic	$\Theta(N)$		
randomized	$\Theta(N)$		

Expected number of episodes required to learn an optimal policy for DeepSea with size N. **Optimistic**: optimism in the face of uncertainty (**OFU**); **Randomized**: randomizing the belief of the environment, e.g. **Posterior sampling**

HyperAgent: Efficiency in benchmarks (DeepSea)

Comparison with Ensemble+ [OAC18, OVRRW19], HyperDQN [LLZ⁺22], ENN-DQN[OWA⁺23b].

▶ ✓ Scalable as size $N \uparrow$. State representation: one-hot vector in high-dimension \mathbb{R}^N .

▶ ✓ Data efficient: HyperAgent the only and first achieving optimal episode complexity $\Theta(N)$. HyperAgent for Efficient RL [LXHL24] (ICML) | Empirical evidence on efficient deep exploration with deep RL 34/54

HyperAgent: comparison with other posterior approximation methods

 $\label{eq:comparison} \begin{array}{l} \mbox{Comparison on approximate posterior sampling methods: Variational approximation (SANE [AL21]), Langevin Monte-Carlo (AdamLMCDQN [ILX^+24]) and Ensemble+ [OAC18, OVRRW19] \end{array}$

HyperAgent for Efficient RL [LXHL24] (ICML) | Empirical evidence on efficient deep exploration with deep RL 35/54

Motivation: RL under Resource Constraints

Existing solution and their limitations

Our Contributions

HyperAgent for Efficient RL [LXHL24] (ICML)

Theoretical insights with tabular representation Empirical evidence on efficient deep exploration with deep RL

Reduce sequential posterior approx. to sequential random projection

GPT-HyperAgent for Continual Content Moderation

HyperAgent for Efficient RL [LXHL24] (ICML) | Reduce sequential posterior approx. to sequential random projection 36 / 54

Step 1: Rewrite incremental update on $\tilde{m}_{k,sa}$

- E_{ℓ} : the collection of time steps in episode ℓ .
- ▶ $E_{\ell,sa}$: the collection of time steps in episode ℓ encountering state-action pair (s, a).
- ▶ Define a sequence of indicator variables $x_{\ell,t} = \mathbb{1}_{t \in E_{\ell,sa}}$. Note

$$\sum_{\ell=1}^{k-1} \sum_{t \in E_\ell} x_{\ell,t}^2 = N_{k,sa}$$

▶ Define short notations $\mathbf{z}_0 = \mathbf{z}_{0,sa}$ and $x_0 = \sqrt{\beta}$. Let $\beta = \sigma^2 / \sigma_0^2$. Equation (5) now becomes

$$\frac{(N_{k,sa}+\beta)}{\sigma}\tilde{m}_{k,sa} = x_0 \mathbf{z}_0 + \sum_{\ell=1}^{k-1} \sum_{t \in E_\ell} x_{\ell,t} \mathbf{z}_{\ell,t+1}$$
(7)

▶ Lemma 1 \Rightarrow w.h.p. Equation (8) holds for all $(s, a) \in S \times A$ and $k \in [K]$ simultaneously:

$$(1-\varepsilon)(x_0^2 + \sum_{\ell=1}^{k-1} \sum_{t \in E_\ell} x_{t,\ell}^2) \leq \|x_0 \mathbf{z}_0 + \sum_{\ell=1}^{k-1} \sum_{t \in E_\ell} x_{\ell,t} \mathbf{z}_{\ell,t+1}\|^2 \leq (1+\varepsilon)(x_0^2 + \sum_{\ell=1}^{k-1} \sum_{t \in E_\ell} x_{\ell,t}^2)$$
(8)

HyperAgent for Efficient RL [LXHL24] (ICML) | Reduce sequential posterior approx. to sequential random projection 37 / 54

Classical JL for random projection

Try to relate Equation (8) to the classical Johnson–Lindenstrauss (JL) lemma:

Consider
$$\Pi = (\mathbf{z}_1, \dots, \mathbf{z}_d) \in \mathbb{R}^{M \times d}, \quad x = (x_1, \dots, x_d)^\top \in \mathbb{R}^d, \text{ then } \Pi x = \sum_{i=1}^d x_i \mathbf{z}_i$$

.

Lemma 2 (Distributional JL lemma [JL84]).

For any $0 < \varepsilon, \delta \leq 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{M \times d}$ for $M = O\left(\varepsilon^{-2}\log(1/\delta)\right)$ such that for any $x \in \mathbb{R}^d$

$$\mathbb{P}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}}\left(\|\Pi x\|_2^2 \notin \left[(1-\varepsilon)\|x\|_2^2, (1+\varepsilon)\|x\|_2^2\right]\right) < \delta$$

Existing JL analysis based on the assumption: x fixed non-random or the projection matrix Π is generated independently with the data x, i.e.

$$\Pi := (\mathbf{z}_1, \ldots, \mathbf{z}_d) \perp x := (x_1, \ldots, x_d).$$

HyperAgent for Efficient RL [LXHL24] (ICML) | Reduce sequential posterior approx. to sequential random projection 38 / 54

Sequential dependence structure in HyperAgent when interacting with environment is that

- E_{ℓ} : the collection of time steps in episode ℓ .
- ► $E_{\ell,sa}$: the collection of time steps in episode ℓ
- ► x_{ℓ,t} = 1_{t∈Eℓ,sa} is dependent on the environmental and algorithmic randomness in all previous time steps:

$$\mathbf{z}_{0}, (x_{1,t'}, \mathbf{z}_{1,t'+1})_{t' \in E_1}, (x_{2,t'}, \mathbf{z}_{2,t'+1})_{t' \in E_2}, \dots, (x_{\ell,t'}, \mathbf{z}_{\ell,t'+1})_{t' < t};$$

 \triangleright $\mathbf{z}_{\ell,t+1}$ is independent of the environmental and algorithmic randomness in all previous time steps:

$$\mathbf{z}_{0}, (x_{1,t'}, \mathbf{z}_{1,t'+1})_{t' \in E_{1}}, (x_{2,t'}, \mathbf{z}_{2,t'+1})_{t' \in E_{2}}, \dots, (x_{\ell,t'+1}, \mathbf{z}_{\ell,t'+1})_{t' < t}, x_{\ell,t'},$$

HyperAgent for Efficient RL [LXHL24] (ICML) | Reduce sequential posterior approx. to sequential random projection 39 / 54

Difficulty and Novelty in the Mathemtical Analysis: No Prior Art

Sequential dependence of high-dimensional R.V. due to the adaptive nature of sequential decision-making.

Difficulty: (1) Conditioned on x_t , $(\mathbf{z}_s)_{s < t}$ loss their independence; (2) No characterization on $P_{(\mathbf{z}_s)_{s < t}|x_t}$. \Rightarrow Traditional analysis of random projection cannot handle sequential dependence [Li24a].

First probability tool for sequential random projection. [Li24a]

- A non-trivial martingale extension of the Johnson-Lindenstrauss (JL).
- Technical novelty: a careful construction of stopped process with non-trivial application of 'method of mixtures' in self-normalized martingale.

HyperAgent for Efficient RL [LXHL24] (ICML) | Reduce sequential posterior approx. to sequential random projection 40/54

Theorem 1 (Sequential random projection in adaptive processes [Li24a]).

- Let $\varepsilon \in (0,1)$ be fixed and $(\mathcal{F}_t)_{t \ge 0}$ be a filtration. Let $\mathbf{z}_0 \in \mathbb{R}^M$ be an \mathcal{F}_0 -measurable random vector satisfies $\mathbb{E}[\|\mathbf{z}_0\|^2] = 1$ and $\|\|\mathbf{z}_0\|^2 - 1| \le (\varepsilon/2)$. - Let $(\mathbf{z}_t)_{t \ge 1} \subset \mathbb{R}^M$ be a stochastic process adapted to filtration $(\mathcal{F}_t)_{t \ge 1}$ such that it is $\sqrt{c_0/M}$ -sub-Gaussian and each \mathbf{z}_t is unit-norm. - Let $(x_t)_{t \ge 1} \subset \mathbb{R}$ be a stochastic process adapted to filtration $(\mathcal{F}_{t-1})_{t \ge 1}$ such that it is c_x -bounded. Here, c_0 and c_x are absolute constants. - For any fixed $x_0 \in \mathbb{R}$, if the following condition is satisfied

$$M \ge \frac{16c_0(1+\varepsilon)}{\varepsilon^2} \left(\log\left(\frac{1}{\delta}\right) + \log\left(1 + \frac{c_x T}{x_0^2}\right) \right),$$

we have, with probability at least $1 - \delta$

$$\forall t \in \{0, 1, \dots, T\}, \quad (1-\varepsilon)(\sum_{i=0}^t x_i^2) \leq \|\sum_{i=0}^t x_i \mathbf{z}_i\|^2 \leq (1+\varepsilon)(\sum_{i=0}^t x_i^2).$$

HyperAgent for Efficient RL [LXHL24] (ICML) | Reduce sequential posterior approx. to sequential random projection 41/54

Motivation: RL under Resource Constraints

Existing solution and their limitations

Our Contributions

HyperAgent for Efficient RL [LXHL24] (ICML)

Theoretical insights with tabular representation Empirical evidence on efficient deep exploration with deep RL Reduce **sequential posterior approx**. to sequential random projection

GPT-HyperAgent for Continual Content Moderation

Distributed Continual Content Moderation

Figure: Only-published content is sent to the crowd-sourced feedback system.

GPT-HyperAgent for Continual Content Moderation

- Context: text content from Hugging Face (HF): 'ucberkeley-dlab/measuring-hate-speech' coming sequentially.
- AI Moderator: decide to publish or not according to regression output and a threshold.
- Human Feedback: In our experiments, this is simulated by a harmfulness attribute in the dataset, translating to binary feedback.
- Training: GPT-2 with Hypermodel for the last layer. Regression on the feedback.

Distributed Continual Content Moderation

Simple, Efficient, Scalable: Bridging Theory and Practice

References I

- [AJZ23] Alekh Agarwal, Yujia Jin, and Tong Zhang. Vo q I: Towards optimal regret in model-free rl with nonlinear function approximation. In *The Thirty Sixth Annual Conference on Learning Theory*, pages 987–1063. PMLR, 2023.
 - [AL21] Siddharth Aravindan and Wee Sun Lee. State-aware variational thompson sampling for deep q-networks. In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pages 124–132, 2021.
- [DAHVR24] Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient exploration for Ilms. *arXiv preprint arXiv:2402.00396*, 2024.
 - [DKL⁺21] Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong Wang. Bilinear classes: A structural framework for provable generalization in rl. In International Conference on Machine Learning, pages 2826–2836. PMLR, 2021.
 - [DLI⁺20] Vikranth Dwaracherla, Xiuyuan Lu, Morteza Ibrahimi, Ian Osband, Zheng Wen, and Benjamin Van Roy. Hypermodels for exploration. In *International Conference on Learning Representations*, 2020.

[DMM⁺22] Chris Dann, Yishay Mansour, Mehryar Mohri, Ayush Sekhari, and Karthik Sridharan. Guarantees for epsilon-greedy reinforcement learning with function approximation. In International conference on machine learning, pages 4666–4689. PMLR, 2022.

- [DMZZ21] Christoph Dann, Mehryar Mohri, Tong Zhang, and Julian Zimmert. A provably efficient model-free posterior sampling method for episodic reinforcement learning. Advances in Neural Information Processing Systems, 34:12040–12051, 2021.
- [FKQR21] Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of interactive decision making. arXiv preprint arXiv:2112.13487, 2021.
- [HMVH⁺18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep reinforcement learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.

References III

- [ICN+21] Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup, and Lin Yang. Randomized exploration in reinforcement learning with general value function approximation. In *International Conference on Machine Learning*, pages 4607–4616. PMLR, 2021.
- [ILX⁺24] Haque Ishfaq, Qingfeng Lan, Pan Xu, A. Rupam Mahmood, Doina Precup, Anima Anandkumar, and Kamyar Azizzadenesheli. Provable and practical: Efficient exploration in reinforcement learning via langevin monte carlo. In *The Twelfth International Conference* on Learning Representations, 2024.
- [JKA⁺17] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contextual decision processes with low bellman rank are pac-learnable. In *International Conference on Machine Learning*, pages 1704–1713. PMLR, 2017.
 - [JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. In *Conference on Modern Analysis and Probability*, volume 26, pages 189–206. American Mathematical Society, 1984.

- [JLM21] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl problems, and sample-efficient algorithms. *Advances in neural information processing systems*, 34:13406–13418, 2021.
- [Kak03] Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of London, University College London (United Kingdom), 2003.
- [Li24a] Yingru Li. Probability Tools for Sequential Random Projection, 2024. arXiv: 2402.14026.
- [Li24b] Yingru Li. Simple, unified analysis of Johnson-Lindenstrauss with applications, 2024. arXiv: 2402.10232.
- [LL24] Yingru Li and Zhiquan Luo. Prior-dependent analysis of posterior sampling reinforcement learning with function approximation. In *International Conference on Artificial Intelligence* and Statistics, pages 559–567. PMLR, 2024.

- [LLX⁺23] Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang, and Zhaoran Wang. Maximize to explore: One objective function fusing estimation, planning, and exploration. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [LLZ⁺22] Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, and Zhi-Quan Luo. HyperDQN: A randomized exploration method for deep reinforcement learning. In *International Conference on Learning Representations*, 2022.
- [LXHL24] Yingru Li, Jiawei Xu, Lei Han, and Zhi-Quan Luo. Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent. In *Forty-first International Conference on Machine Learning*, Proceedings of Machine Learning Research, 2024.
- [OAC18] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement learning. *Advances in Neural Information Processing Systems*, 31, 2018.
- [OBPVR16] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped dqn. *Advances in neural information processing systems*, 29, 2016.

- [OVR17] Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement learning? In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML'17, page 2701–2710. JMLR.org, 2017.
- [OVRRW19] Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized value functions. *Journal of Machine Learning Research*, 20(124):1–62, 2019.
- [OWA⁺23a] Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [OWA⁺23b] Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu, and Benjamin Van Roy. Approximate thompson sampling via epistemic neural networks. *arXiv preprint arXiv:2302.09205*, 2023.
 - [RVR16] Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thompson sampling. The Journal of Machine Learning Research, 17(1):2442-2471, 2016.

- [RVRK⁺18] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on thompson sampling. Foundations and Trends in Machine Learning, 11(1):1–96, 2018.
 - [SCC⁺23] Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agarwal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level efficiency. In *International Conference on Machine Learning*, pages 30365–30380. PMLR, 2023.
 - [Str00] Malcolm Strens. A bayesian framework for reinforcement learning. In *ICML*, volume 2000, pages 943–950, 2000.
 - [Str07] Alexander L Strehl. *Probably approximately correct (PAC) exploration in reinforcement learning*. PhD thesis, Rutgers University-Graduate School-New Brunswick, 2007.
 - [VHGS16] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

- [WSY20] Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value function approximation: Provably efficient approach via bounded eluder dimension. Advances in Neural Information Processing Systems, 33:6123–6135, 2020.
- [XZM⁺22] Pan Xu, Hongkai Zheng, Eric V Mazumdar, Kamyar Azizzadenesheli, and Animashree Anandkumar. Langevin monte carlo for contextual bandits. In *International Conference on Machine Learning*, pages 24830–24850. PMLR, 2022.
 - [Zha22] Tong Zhang. Feel-good thompson sampling for contextual bandits and reinforcement learning. *SIAM Journal on Mathematics of Data Science*, 4(2):834–857, 2022.
 - [ZVR23] Zheqing Zhu and Benjamin Van Roy. Deep exploration for recommendation systems. In Proceedings of the 17th ACM Conference on Recommender Systems, pages 963–970, 2023.
- [ZXZ⁺22] Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, and Tong Zhang. Gec: A unified framework for interactive decision making in mdp, pomdp, and beyond. arXiv preprint arXiv:2211.01962, 2022.