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Reinforcement Learning Problem

Environment M = (S, A, P)
P> State St+1 ~ P( | St,At).

Agent(S, A, r,D;) — 1 to max long-term rewards
» Reward R;;1 = 7(St, At, Sp1) where 1 describes the
Agent's preference.
» Historical Data Dy = D; 1 U {A;_1,S;} is accumulated
with initial Dy = {Sp} of Dy = Dyffiine-
> Action A ~ m¢(- | St); Policy 1y = Agent(S, A, r, Dy)
adapted to the accumulated D;.

Figure: Agent-Environment Interface.
Experience: Ag,S1,A1,S2,. ..

» Objective: 7Tagent = (7o, 771, . ..) to maximize
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Complex Environment has Exponentially Large S 1

Environment M = (S, A, P)
> State Syq ~ P (- | S, Ar). J

» Games: Exponentially large state space (e.g., Go > 10170, Atari
games > 128(160192) (Raw pixels), etc.)

» Real-world applications: High-dimensional state space (e.g., image,
video, audio, text, high-dimensional feature vectors, etc.)
— Healthcare: Patient state (e.g., blood pressure, heart rate, health
record ...)

Figure: Real-world Environment is — Chatbot (GPTs): Conversation state (e.g., prompt, dialogue

Complex: Large state space, history, accessible relevant information etc.)
Non-stationary dynamics, etc
— Communication, Robotics, Agriculture
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Unbouned resource requirement as D 1 and S 1

Agent(S, A, r,D;) — 1y to max long-term rewards

» Policy 7r; = Agent(S, A, r, D;) adapted to accumulated
Dy with size T and taking large S as input.

» Resource constraints on memory and computation.

» NOT tractable to retrain the entire history data D from

i . scratch; otherwise memory and computation requirement
Figure: Agent-Environment Interface. i
Experience: Ao, S1,A1,S2,...; and |D| 1 oo growing unbounded as |D| 1 oo

» NOT tractable to directly handle exponentially large S.
v
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Development of RL Algorithms: A history of "Scale up!"

R.S. Sutton & A. Barto
R. Bellman, C. J.C.H. Watkins DeepMind
R. A. Howard, D. Bertsekas & J. Tsitsiklis OpenAl
D. Blackwell Temporal Difference, Q-Learning Etc.
Dy ic Progr Appr e (Neuro) DPs Deep RL (Advances in Algorithms and Computations)
(Markov) Decision Processes  Parallel and Distributed Computation  AlphaGo & GPTs (Foundation Models)
50s-60s 70s-90s 2010s --

Computation First

» Scale up? : (S1) Larger? state space S; (S2) Data D accumulated? .
»> Modern RL Paradigm: (S1) Function Approximation (Deep Neural Networks); (52) Continuous
adaptation: Incremental optimization with SGD, Experience Replay and/or Target Network.
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Key for Scalablity: (K1) Bounded Per-step Computational Complexity: ‘NOT Scale’ with |S| and \DU
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Scaling up! Then?

Scale up 1 AlphaGo—MuZero Series

[Silver et al., 2016, 2017, 2018, Schrittwieser et al., 2020]

» S 1: Go—+Board game—+Atari.

» D 1: human-played games (offline) + self-play (online)

— Purely self-play (online).

Extremely Inefficient | (e.g. AlphaGo Zero)

> Data hungry: 29 million (> 107) games of self-play

» Huge computation costs: Replication would cost
$35,354,222 due to data collection (sampled from

simulated environment) and model computation. Training

over 40 days.

~
~

o
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== : Standard Atari Benchmarks

Scale up 1
» S 7 : high-dimensional visual input
» D 1: handle increasingly large amount of game-playing

frames )

Inefficient |
» Data: DQN[Mnih et al., 2015] requires ~ 200M frames
to reach human-level performance in Atari.
> Deployment: BBF [Schwarzer et al., 2023] combines
> 15 heuristics and tricks. Hard and laborious to tune,

JINWi train and deploy.

ar-lovl
performance Invideo games
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RLHF for LLMs

%
% o7l Scale up 1
© ﬁ . .
(’?"g\ — Rmm /',,‘,sw,e,e,me » S 1: more complex, diverse or longer conversations
LM Q . o
N » D 7T: incrementally adapt to extensive online human
~ / ) y adap

g/\ﬂ feedbacks )

Response 2 Negative Preference
Refinement Inefficient |

;r):rs:mg:: :‘m:::;:‘ll)o(\;; e S NVIDIA Arooaod oo [ » Data: Human feedback is scarce and expensive in

Model Sizes Step 1 Step 2| Step 3 | Total

Actor: OPT-13B, Reward: OPT-30M _ 2:5h_ 0.25hr | 10.8hr | 13600 alignment problem. (1.5M (Offline) and 1.7M (Online) in
Table 5: E2E time breakdown for training a 66 billion parameter] ChatGPT fmodel via LLa MA2 [TOUVrOn et a | og 2023])
DeepSpeed-Chat on 8 DGX nodes with 8 NVIDIA A100-80G GPUs/ndlle.

Model Sizes Step 1 Step 2 Step 3| Total . . .. .

Actor: OPT-66B, Reward: OPT-350M 82 mins 5 mins 7.5hr 9hr > ComPUtatlon' RLH F occu ples most Of the tra mni ng tl me.

[Yao et al., 2023]
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Efficiency Challenges in Modern RL: Summary

Modern RL is scalablef, much success in simulated environment.
»> Modern RL Paradigm: (S1) DNN; (S2) Incremental optimization

» = Scalable Algorithm to handle (S1) S 1; and (S2) D 1 with (K1) Bounded Per-step
Computational Complexity.
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Efficiency Challenges in Modern RL: Summary

Modern RL is scalablef, much success in simulated environment.
»> Modern RL Paradigm: (S1) DNN; (S2) Incremental optimization

» = Scalable Algorithm to handle (S1) S 1; and (S2) D 1 with (K1) Bounded Per-step
Computational Complexity.

Modern RL is inefficient], an obstacle for real-world applications.
> (E1) Data Hungry: Collecting data can be expensive and time-consuming in real-world.

> (E2) Computation: The per-step computation cost, although bounded (K1), is still high since
Increasingly larger deep network, e.g. AlphaGo (> 30M), GPT-3.5 (175B) and GPT-4 (> 1T).

» (E3) Deployment: Many heuristic training tricks and complicated components. Laborious to tune
and deploy. Engineering cost is high, especially for real-world applications.

V.
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Research question?

Towards fulfilling the promise of RL in real-world complex environment, can we design

> (A1) Simple Algorithm easy to use and deploy (E3)

> (A2) Efficient Algorithm low data (E1) and computation cost (E2)

> (A3) Scalable Algorithm large S 1 (S1) and accumulated D 1 (S2)
“To complicate is easy. To simplify is difficult.” — Bruno Munari)
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What's wrong with current data efficiency solutions?
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Data Efficiency under Function Approximation: Theoretical Effort

Eluder dimension/Information Ratio

g_ H Epeg%Et Bellman Rank/Bilinear Structure
polynomial- limggmﬁ.‘_;"% R.A. Fisher, William R. Thompson (30s) Decoupling coefficient/DEC/GEC ...
UCRL™ g s T. L. Lai and H. Robbins (80s) E3/PSRL/UCRL ... Structural assumption and Algorithms for
Sequential design and allocations (MAB) Tabular RL RL with function approximation
Before 90s 2000 -- 2014 --

> / Provably data efficient exploration strategy: Optimism in the face of uncertainty (OFU),
Posterior sampling, ... (From Tabular era to Function Approximation (FA) era)

» / Theoretical advancement: structural assumptions under which RL(FA) is statistically tractable.
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Data Efficiency under Function Approximation: Theoretical Effort

Eluder dimension/Information Ratio
Bellman Rank/Bilinear Structure
R.A. Fisher, William R. Thompson (30s) Decoupling coefficient/DEC/GEC ...
T. L. Lai and H. Robbins (80s) E3/PSRL/UCRL ... Structural assumption and Algorithms for
Sequential design and allocations (MAB) Tabular RL RL with function approximation

Before 90s 2000 -- 2014 --

S hghirobabity

o

> X Intractable computation: intricate nonconvex optimization [Jiang et al., 2017, Jin et al., 2021,
Du et al., 2021, Foster et al., 2021, Liu et al., 2023] or sampling from intricate distribution [Zhang,
2022, Dann et al., 2021, Zhong et al., 2022].

» X Unbounded memory and computation: e.g. need to re-train entire history for each episode (with
regression oracle) [Osband et al., 2019, Wang et al., 2020, Ishfaq et al., 2021, Agarwal et al., 2023]
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Data Efficiency in Deep RL: Practical Work

Algorithm ‘ Components

DDQN incremental SGD with experience replay and target network
Rainbow (DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.
(DDQN) + Prioritized replay, Dueling networks, Distributional RL,

Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.

BBF(23)

Table: The extra techniques used in different algorithms, e.g. DDQN [Van Hasselt et al., 2016], Rainbow [Hessel
et al., 2018], BBF [Schwarzer et al., 2023].

» / Scalable: e.g. DDQN use incremental SGD with experience replay and target network.
» X Not Simple: Complicated component and many heuristic tricks. Hard and laborious to tune.

» X Not Efficient: Provably inefficient: e.g. BBF use e-greedy which need exponential many sample
in some environment, provably [Kakade, 2003, Strehl, 2007, Osband et al., 2019, Dann et al., 2022].
Practically inefficient: Per-step computational cost is high, e.g. BBF uses larger networks.

What's wrong with current data efficiency solutions? 15/35
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HyperAgent: Simple and Scalable Algorithmic Component

Algorithm ‘ Components
DDQN incremental SGD with experience replay and target network
Rainbow (DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.

(DDQN) + Prioritized replay, Dueling networks, Distributional RL,

BBF (23
(23) Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.

HyperAgent Hypermodel

Table: The extra techniques used in different algorithms, e.g. DDQN [Van Hasselt et al., 2016], Rainbow [Hessel
et al., 2018], BBF [Schwarzer et al., 2023] and our HyperAgent.

» / Simple: Compared to DDQN [Van Hasselt et al., 2016], only one additional component,
hypermodel, that is easily compatiable with all Feedforward Deep Networks.

» / Scalable: Incremental SGD under DNN function approximation, same as DDQN.
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HyperAgent: Hypermodel

> Base model: DQN-type structure Qg(s,a) = (¢g,.,,.. (5), Opredict(a))-
» Hypermodel: Opedict = fv(z) where z ~ p(z). p(z) is a fixed reference distribution.

/\ random vector //\

z — EE——— gpredict = fu(z)

p(z) fl/ p(epredict)

state Hidden Predict
Layers Layer

¢0hldden predxct

value function

— Qo(s,a)

Resulting model: Q9h;aaen,fu(z)(s’u) is a randomized value function depends on (s,a) and additional J

random variable z.
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HyperAgent: Efficiency in benchmarks (Atari)

le7
1.0 o DQN (Nature)
0.8
8 0.6
a % BootDQN
#* 0.41
0.2 * e Rainbow
HyperAgent
0.01 EfficientZero e BBF e
106 107

# Parameters

> / Data efficient: 15% data consumption of DQN[Mnih et al., 2015] by Deepmind.

> / Computation efficient: 5% model parameters of BBF[Schwarzer et al., 2023] by Deepmind.
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HyperAgent: Efficiency in benchmarks (DeepSea)

x 103 DeepSea
10
g 8 1 2 3 N
)
S 6 V(N
2
g4 2
3 2
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Size
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—— ENNDQN  —— H:*i)«u!\.gunt =P

Figure: Comparative results on DeepSea with BootDQN [Osband et al., 2018], HyperDQN [Li et al., 2022],
ENN-DQN[Osband et al., 2023]. The y-axis represents the number of episodes required to learn the optimal policy

for a specific problem size. The symbol x indicates the algorithm was unable to learn within 10* episodes.

» / scalable as size 1. v data efficient: optimal episode complexity is linear in the size of the problem.

Introducing HyperAgent: Simple, Efficient, Scalable | Results 23 /35



HyperAgent: Efficiency in 8 hard exploration tasks

Alien Gravitar
2500 800
< 2000
E
2 1500
)
8 1000
n
=
w500
0 - 0
0 05M 1.0M 15M 2M 0 05M 1.0M 15M 2M 0 05M 10M 15M 2M
Pitfall Qbert Solaris
0
c -250 3000
2
& -s00 2000
)
g -0
2 1000
S -1000
-1250
o = 0
0 05M 1.0M 15M 2M 0 05M 1.0M 15M 2M 0 05M 1.0M 15M 2M

Num of Steps

Num of Steps

Num of Steps

—— Rainbow
—— HyperDQN

—— AdamLMCDQN
—— LangevinAdam

—— SANE
—— BootDQN

Figure: Comparative results on 8 hardest exploration games. HyperAgent shows stable performance and
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—— HyperAgent

exploration efficiency compared with randomized RL algorithm including other approximate posterior sampling

methods.
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HyperAgent: Theoretical Guarantees in RL

Practical General FA

Theoreical Finite-horizon Tabular

Algorithm ‘ FA  Incremental Efficiency ‘ Regret Per-step computation
PSRL[Osband and Van Roy, 2017] X X X H2V/SAK v/ SA
RLSVI[Osband et al., 2019] VR X H2\/SAK v/ S2A
Ensemble+[Osband et al., 2019] o/ N/A N/A
Bayes-UCBVI[Tiapkin et al., 2022] X X X VH3SAK v/ S2A
Incre-Bayes-UCBVI[Tiapkin et al., 2022] | v/ N/A N/A
LMC-LSVI[Ishfaq et al., 2023] ooV H?VS3A3K X K-S?A-log SAHK
HyperAgent oo/ v H?V/SAK  / S?A-logSAHK

» Finite-horizon tabular: # states: S, # actions: A, horizons: H, # episodes: K

» PSRL and Bayes-UCBVI requires dirichlet prior over transitions, otherwise computation intractable;
RLSVI requires gaussian noise, otherwise unbounded per-step computation O(K).

» The lemma 3 in [Osband and Van Roy, 2017] target for time-homogeneous MDP may not be
correct as pointed out in [Qian et al., 2020]. By a careful revisit, the bound can be corrected to

H?\/SAK for time-inhomogeneous setting.
Introducing HyperAgent: Simple, Efficient, Scalable | Results 25 /35



HyperAgent: Possible theoertical extensions

» \We already have a theoretical results in linear bandit, which RL with S =1, H =1 and linear

function approximation.

» Immidiate extension to RL under Linear Function Approximation (H > 1) pose no much more
difficulty.

» Extension to infinite horizon average-reward RL is doable. | have some preliminary results.

» Extension to function approximation with generalized linear model and neural tangent kernel is
possible.
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The novelty and difficulty in the mathemtical analysis: No Prior Art

Timet=1 Timet=2 Timet=23 Time t Time t 41
XY — X pXF P X Xpi]

S

First probability tool for sequential random projection. A Non-trivial martingale extension of the
Johnson-Lindenstrauss lemma and Subspace embedding. J

» Difficulty: Sequential dependence of high-dimensional R.V. due to the adaptive nature of Sequential
Decision Making.

» Novelty: A novel and careful construction of stopped process with non-trivial application of

‘method of mixtures’ in self-normalized martingale.
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Simple, Efficient, Scalable: Bridging Theory and Practice

-2 Bolizmann
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HyperAgent is the first principled RL agent that is
» Simple, Efficient and Scalable;

» Empirically and Theoretically justified. No Prior Art.
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