HyperAgent: A Simple, Efficient and Scalable RL framework in Complex Environment

Yingru Li

yingruli@link.cuhk.edu.cn
The Chinese University of Hong Kong, Shenzhen

January 13, 2024

Reinforcement Learning Problem

Figure: Agent-Environment Interface. Experience: $A_0, S_1, A_1, S_2, ...$

Environment M = (S, A, P)

▶ State $S_{t+1} \sim P(\cdot \mid S_t, A_t)$.

$Agent(\mathcal{S}, \mathcal{A}, r, \mathcal{D}_t) \rightarrow \pi_t$ to max long-term rewards

- ▶ Reward $R_{t+1} = r(S_t, A_t, S_{t+1})$ where r describes the Agent's preference.
- ▶ Historical Data $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{A_{t-1}, S_t\}$ is accumulated with initial $\mathcal{D}_0 = \{S_0\}$ or $\mathcal{D}_0 = \mathcal{D}_{\text{offline}}$.
- ▶ Action $A_t \sim \pi_t(\cdot \mid S_t)$; Policy $\pi_t = \operatorname{Agent}(\mathcal{S}, \mathcal{A}, r, \mathcal{D}_t)$ adapted to the **accumulated** \mathcal{D}_t .
- ▶ **Objective**: $\pi_{agent} = (\pi_0, \pi_1, ...)$ to maximize

$$\mathbb{E}\left[\sum_{t=0}^{T-1} R_{t+1} \mid \pi_{\text{agent}}, M\right]. \tag{1}$$

Complex Environment has Exponentially Large $\mathcal{S}\uparrow$

Figure: Real-world Environment is **Complex: Large state space**, Non-stationary dynamics, etc

Environment M = (S, A, P)

- ▶ State $S_{t+1} \sim P(\cdot \mid S_t, A_t)$.
- ► Games: Exponentially large state space (e.g., Go $> 10^{170}$, Atari games $> 128^{(160 \times 192)}$ (Raw pixels), etc.)
- ► Real-world applications: High-dimensional state space (e.g., image, video, audio, text, high-dimensional feature vectors, etc.)
 - Healthcare: Patient state (e.g., blood pressure, heart rate, health record ...)
 - Chatbot (GPTs): Conversation state (e.g., prompt, dialogue history, accessible relevant information etc.)
 - Communication, Robotics, Agriculture

- ..

Unbouned resource requirement as $\overline{\mathcal{D}}\uparrow$ and $\overline{\mathcal{S}}\uparrow$

Figure: Agent-Environment Interface. Experience: $A_0, S_1, A_1, S_2, \ldots$; and $|\mathcal{D}| \uparrow \infty$

$Agent(S, A, r, D_t) \rightarrow \pi_t$ to max long-term rewards

- Policy $\pi_t = \operatorname{Agent}(\mathcal{S}, \mathcal{A}, r, \mathcal{D}_t)$ adapted to **accumulated** \mathcal{D}_t with size \uparrow and taking **large** \mathcal{S} as input.
- ▶ Resource constraints on **memory** and **computation**.
- NOT tractable to retrain the entire history data \mathcal{D} from scratch; otherwise memory and computation requirement growing unbounded as $|\mathcal{D}| \uparrow \infty$.
- **NOT tractable** to directly handle exponentially large S.

Outline

Scaling up! Then?

What's wrong with current data efficiency solutions?

Introducing HyperAgent: Simple, Efficient, Scalable Results

Development of RL Algorithms: A history of "Scale up!"

- ▶ Scale up↑ : (S1) Larger↑ state space S; (S2) Data D accumulated↑ .
- ▶ Modern RL Paradigm: (S1) Function Approximation (Deep Neural Networks); (S2) Continuous adaptation: Incremental optimization with SGD, Experience Replay and/or Target Network.

Key for Scalablity: (K1) Bounded Per-step Computational Complexity: 'NOT Scale' with |S| and |D|.

Scale up ↑ AlphaGo→MuZero Series

[Silver et al., 2016, 2017, 2018, Schrittwieser et al., 2020]

- \triangleright $S \uparrow$: Go \rightarrow +Board game \rightarrow +Atari.
- ▶ $\mathcal{D} \uparrow$: human-played games (offline) + self-play (online) → Purely self-play (online).

Extremely Inefficient ↓ (e.g. AlphaGo Zero)

- ▶ Data hungry: 29 million (> 10^7) games of self-play
- ► Huge computation costs: Replication would cost ≈ \$35,354,222 due to data collection (sampled from simulated environment) and model computation. Training over 40 days.

Scalablity \neq **Efficiency**: Standard Atari Benchmarks

Scale up ↑

- $ightharpoonup \mathcal{S} \uparrow$: high-dimensional visual input
- $ightharpoonup \mathcal{D} \uparrow$: handle increasingly large amount of game-playing frames

Inefficient \downarrow

- ▶ Data: DQN[Mnih et al., 2015] requires $\approx 200M$ frames to reach human-level performance in Atari.
- ▶ Deployment: BBF [Schwarzer et al., 2023] combines > 15 heuristics and tricks. Hard and laborious to tune, train and deploy.

Scalablity \neq Efficiency: RLHF for LLMs

Table 4: E2E time breakdown for training a DeepSpeed-Chat on a single DGX node with 8 N				model via
Model Sizes	Step 1	Step 2	Step 3	Total
Actor: OPT-13B, Reward: OPT-350M	2.5 hr	0.25 hr	10.8hr	13.6hr
Table 5: E2E time breakdown for training a DeepSpeed-Chat on 8 DGX nodes with 8 NVIDIA				model via
Model Sizes	Step 1	Step 2	Step 3	Total
Actor: OPT-66B, Reward: OPT-350M	82 mins	5 mins	7.5hr	9hr

Scale up ↑

- ightharpoonup $\mathcal{S}\uparrow$: more complex, diverse or longer conversations
- $ightharpoonup \mathcal{D} \uparrow$: incrementally adapt to extensive online human feedbacks

Inefficient \downarrow

- ▶ Data: Human feedback is scarce and expensive in alignment problem. (1.5M (Offline) and 1.7M (Online) in LLaMA2 [Touvron et al., 2023])
- ► Computation: RLHF occupies most of the training time. [Yao et al., 2023]

Efficiency Challenges in Modern RL: Summary

Modern RL is scalable \(\), much success in simulated environment.

- ▶ Modern RL Paradigm: (S1) DNN; (S2) Incremental optimization
- ▶ ⇒ Scalable Algorithm to handle (S1) $S \uparrow$; and (S2) $D \uparrow$ with (K1) Bounded Per-step Computational Complexity.

Modern RL is inefficient, an obstacle for real-world applications.

- ▶ (E1) Data Hungry: Collecting data can be expensive and time-consuming in real-world.
- ► (E2) Computation: The per-step computation cost, although bounded (K1), is still high since Increasingly larger deep network, e.g. AlphaGo (> 30M), GPT-3.5 (175B) and GPT-4 (> 1T).
- ▶ (E3) Deployment: Many heuristic training tricks and complicated components. Laborious to tune and deploy. Engineering cost is high, especially for real-world applications.

Efficiency Challenges in Modern RL: Summary

Modern RL is scalable[↑], much success in simulated environment.

- ▶ Modern RL Paradigm: (S1) DNN; (S2) Incremental optimization
- ▶ ⇒ Scalable Algorithm to handle (S1) $S \uparrow$; and (S2) $D \uparrow$ with (K1) Bounded Per-step Computational Complexity.

Modern RL is inefficient, an obstacle for real-world applications.

- ▶ (E1) Data Hungry: Collecting data can be expensive and time-consuming in real-world.
- ► (E2) Computation: The per-step computation cost, although bounded (K1), is still high since Increasingly larger deep network, e.g. AlphaGo (> 30M), GPT-3.5 (175B) and GPT-4 (> 1T).
- ► (E3) Deployment: Many heuristic training tricks and complicated components. Laborious to tune and deploy. Engineering cost is high, especially for real-world applications.

Research question?

Towards fulfilling the promise of RL in real-world complex environment, can we design

► (A1) Simple Algorithm easy to use and deploy (E3)

► (A2) Efficient Algorithm low data (E1) and computation cost (E2)

▶ (A3) Scalable Algorithm large $S \uparrow$ (S1) and accumulated $D \uparrow$ (S2)

"To complicate is easy. To simplify is difficult."

– Bruno Munari

Outline

Scaling up! Then?

What's wrong with current data efficiency solutions?

Introducing HyperAgent: Simple, Efficient, Scalable Results

Data Efficiency under Function Approximation: Theoretical Effort

- ▶ ✓ Provably data efficient exploration strategy: Optimism in the face of uncertainty (OFU), Posterior sampling, ... (From Tabular era to Function Approximation (FA) era)
- ► ✓ Theoretical advancement: structural assumptions under which RL(FA) is statistically tractable.

Data Efficiency under Function Approximation: Theoretical Effort

- X Intractable computation: intricate nonconvex optimization [Jiang et al., 2017, Jin et al., 2021, Du et al., 2021, Foster et al., 2021, Liu et al., 2023] or sampling from intricate distribution [Zhang, 2022, Dann et al., 2021, Zhong et al., 2022].
- X Unbounded memory and computation: e.g. need to re-train entire history for each episode (with regression oracle) [Osband et al., 2019, Wang et al., 2020, Ishfaq et al., 2021, Agarwal et al., 2023] What's wrong with current data efficiency solutions?

Data Efficiency in Deep RL: Practical Work

Algorithm	Components		
DDQN	incremental SGD with experience replay and target network		
Rainbow	(DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.		
BBF(23)	(DDQN) + Prioritized replay, Dueling networks, Distributional RL,		
	Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.		

Table: The extra techniques used in different algorithms, e.g. DDQN [Van Hasselt et al., 2016], Rainbow [Hessel et al., 2018], BBF [Schwarzer et al., 2023].

- Scalable: e.g. DDQN use incremental SGD with experience replay and target network.
- X Not Simple: Complicated component and many heuristic tricks. Hard and laborious to tune.
- ▶ X Not Efficient: Provably inefficient: e.g. BBF use ϵ -greedy which need exponential many sample in some environment, provably [Kakade, 2003, Strehl, 2007, Osband et al., 2019, Dann et al., 2022]. Practically inefficient: Per-step computational cost is high, e.g. BBF uses larger networks.

Outline

Scaling up! Then?

What's wrong with current data efficiency solutions?

Introducing HyperAgent: Simple, Efficient, Scalable

Introducing HyperAgent: Simple, Efficient, Scalable

Outline

Scaling up! Then?

What's wrong with current data efficiency solutions?

Introducing HyperAgent: Simple, Efficient, Scalable Results

HyperAgent: Simple and Scalable Algorithmic Component

Algorithm	Components		
DDQN	incremental SGD with experience replay and target network		
Rainbow	(DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.		
BBF (23)	(DDQN) + Prioritized replay, Dueling networks, Distributional RL,		
	Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.		
HyperAgent	Hypermodel		

Table: The extra techniques used in different algorithms, e.g. DDQN [Van Hasselt et al., 2016], Rainbow [Hessel et al., 2018], BBF [Schwarzer et al., 2023] and **our HyperAgent**.

- ➤ ✓ Simple: Compared to DDQN [Van Hasselt et al., 2016], only one additional component, hypermodel, that is easily compatiable with all Feedforward Deep Networks.
- ► ✓ Scalable: Incremental SGD under DNN function approximation, same as DDQN.

HyperAgent: Hypermodel

- ▶ Base model: DQN-type structure $Q_{\theta}(s, a) = \langle \phi_{\theta_{hidden}}(s), \theta_{predict}(a) \rangle$.
- ▶ Hypermodel: $\theta_{\text{predict}} = f_{\nu}(z)$ where $z \sim p(z)$. p(z) is a fixed reference distribution.

Resulting model: $Q_{\theta_{\text{hidden}},f_{V}(z)}(s,a)$ is a randomized value function depends on (s,a) and additional random variable z.

HyperAgent: Efficiency in benchmarks (Atari)

Introducing HyperAgent: Simple, Efficient, Scalable

- Data efficient: 15% data consumption of DQN[Mnih et al., 2015] by Deepmind.
- ✓ Computation efficient: 5% model parameters of BBF[Schwarzer et al., 2023] by Deepmind. Results

HyperAgent: Efficiency in benchmarks (DeepSea)

Figure: Comparative results on DeepSea with BootDQN [Osband et al., 2018], HyperDQN [Li et al., 2022], ENN-DQN[Osband et al., 2023]. The y-axis represents the number of episodes required to learn the optimal policy for a specific problem size. The symbol \times indicates the algorithm was unable to learn within 10^4 episodes.

► ✓ scalable as size ↑. ✓ data efficient: optimal episode complexity is linear in the size of the problem.

HyperAgent: Efficiency in 8 hard exploration tasks

Figure: Comparative results on 8 hardest exploration games. HyperAgent shows stable performance and exploration efficiency compared with randomized RL algorithm including other approximate posterior sampling methods.

HyperAgent: Theoretical Guarantees in RL

	Practical General FA			Theoreical Finite-horizon Tabular		
Algorithm	FA	Incremental	Efficiency	Regret	Per-step computation	
PSRL[Osband and Van Roy, 2017]	X	Х	X	$H^2\sqrt{SAK}$	$\checkmark S^2A$	
RLSVI[Osband et al., 2019]	1	×	X	$H^2\sqrt{SAK}$	$\checkmark S^2A$	
Ensemble+[Osband et al., 2019]	1	✓		N/A	N/A	
Bayes-UCBVI[Tiapkin et al., 2022]	X	×	X	$\sqrt{H^3SAK}$	$\checkmark S^2A$	
Incre-Bayes-UCBVI[Tiapkin et al., 2022]	1	1		N/A	N/A	
LMC-LSVI[Ishfaq et al., 2023]	1	1	•	$H^2\sqrt{S^3A^3K}$	$K \cdot S^2 A \cdot \log SAHK$	
HyperAgent	1	✓	✓	$H^2\sqrt{SAK}$	$\checkmark S^2A \cdot \log SAHK$	

- Finite-horizon tabular: # states: S, # actions: A, horizons: H, # episodes: K
- ▶ PSRL and Bayes-UCBVI requires dirichlet prior over transitions, otherwise computation intractable; RLSVI requires gaussian noise, otherwise unbounded per-step computation $\tilde{O}(K)$.
- ▶ The lemma 3 in [Osband and Van Roy, 2017] target for time-homogeneous MDP may not be correct as pointed out in [Qian et al., 2020]. By a careful revisit, the bound can be corrected to $H^2\sqrt{SAK}$ for time-inhomogeneous setting.

HyperAgent: Possible theoertical extensions

▶ We already have a theoretical results in linear bandit, which RL with S = 1, H = 1 and linear function approximation.

► Immidiate extension to RL under Linear Function Approximation (H > 1) pose no much more difficulty.

Extension to infinite horizon average-reward RL is doable. I have some preliminary results.

Extension to function approximation with generalized linear model and neural tangent kernel is possible.

The novelty and difficulty in the mathemtical analysis: No Prior Art

First probability tool for **sequential random projection**. A **Non-trivial** martingale extension of the Johnson–Lindenstrauss lemma and Subspace embedding.

- ▶ **Difficulty**: Sequential dependence of high-dimensional R.V. due to the adaptive nature of Sequential Decision Making.
- Novelty: A novel and careful construction of stopped process with non-trivial application of 'method of mixtures' in self-normalized martingale.

Simple, Efficient, Scalable: Bridging Theory and Practice

HyperAgent is the first principled RL agent that is

- Simple, Efficient and Scalable;
- **Empirically** and **Theoretically** justified. No Prior Art.

References I

- A. Agarwal, Y. Jin, and T. Zhang. Vo q I: Towards optimal regret in model-free rl with nonlinear function approximation. In *The Thirty Sixth Annual Conference on Learning Theory*, pages 987–1063. PMLR, 2023.
- C. Dann, M. Mohri, T. Zhang, and J. Zimmert. A provably efficient model-free posterior sampling method for episodic reinforcement learning. Advances in Neural Information Processing Systems, 34: 12040–12051, 2021.
- C. Dann, Y. Mansour, M. Mohri, A. Sekhari, and K. Sridharan. Guarantees for epsilon-greedy reinforcement learning with function approximation. In *International conference on machine learning*, pages 4666–4689. PMLR, 2022.
- S. Du, S. Kakade, J. Lee, S. Lovett, G. Mahajan, W. Sun, and R. Wang. Bilinear classes: A structural framework for provable generalization in rl. In *International Conference on Machine Learning*, pages 2826–2836. PMLR, 2021.
- D. J. Foster, S. M. Kakade, J. Qian, and A. Rakhlin. The statistical complexity of interactive decision making. *arXiv preprint arXiv:2112.13487*, 2021.

References II

- M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.
- H. Ishfaq, Q. Cui, V. Nguyen, A. Ayoub, Z. Yang, Z. Wang, D. Precup, and L. Yang. Randomized exploration in reinforcement learning with general value function approximation. In *International Conference on Machine Learning*, pages 4607–4616. PMLR, 2021.
- H. Ishfaq, Q. Lan, P. Xu, A. R. Mahmood, D. Precup, A. Anandkumar, and K. Azizzadenesheli.

 Provable and practical: Efficient exploration in reinforcement learning via langevin monte carlo, 2023.
- N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contextual decision processes with low bellman rank are pac-learnable. In *International Conference on Machine Learning*, pages 1704–1713. PMLR, 2017.
- C. Jin, Q. Liu, and S. Miryoosefi. Bellman eluder dimension: New rich classes of rl problems, and sample-efficient algorithms. *Advances in neural information processing systems*, 34:13406–13418, 2021.

References III

- S. M. Kakade. *On the sample complexity of reinforcement learning*. University of London, University College London (United Kingdom), 2003.
- Z. Li, Y. Li, Y. Zhang, T. Zhang, and Z.-Q. Luo. HyperDQN: A randomized exploration method for deep reinforcement learning. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=X0nrKAXu7g-.
- Z. Liu, M. Lu, W. Xiong, H. Zhong, H. Hu, S. Zhang, S. Zheng, Z. Yang, and Z. Wang. Maximize to explore: One objective function fusing estimation, planning, and exploration. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=A57UMlUJdc.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

References IV

- I. Osband and B. Van Roy. Why is posterior sampling better than optimism for reinforcement learning? In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML'17, page 2701–2710. JMLR.org, 2017.
- I. Osband, J. Aslanides, and A. Cassirer. Randomized prior functions for deep reinforcement learning. *Advances in Neural Information Processing Systems*, 31, 2018.
- I. Osband, B. V. Roy, D. J. Russo, and Z. Wen. Deep exploration via randomized value functions. Journal of Machine Learning Research, 20(124):1–62, 2019. URL http://jmlr.org/papers/v20/18-339.html.
- I. Osband, Z. Wen, S. M. Asghari, V. Dwaracherla, M. Ibrahimi, X. Lu, and B. Van Roy. Approximate thompson sampling via epistemic neural networks. *arXiv preprint arXiv:2302.09205*, 2023.
- J. Qian, R. Fruit, M. Pirotta, and A. Lazaric. Concentration inequalities for multinoulli random variables. arXiv preprint arXiv:2001.11595, 2020.

References V

- J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a learned model. *Nature*, 588(7839):604–609, 2020.
- M. Schwarzer, J. S. O. Ceron, A. Courville, M. G. Bellemare, R. Agarwal, and P. S. Castro. Bigger, better, faster: Human-level atari with human-level efficiency. In *International Conference on Machine Learning*, pages 30365–30380. PMLR, 2023.
- D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.
- D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. *nature*, 550(7676):354–359, 2017.

References VI

- D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. *Science*, 362(6419):1140–1144, 2018.
- A. L. Strehl. *Probably approximately correct (PAC) exploration in reinforcement learning*. PhD thesis, Rutgers University-Graduate School-New Brunswick, 2007.
- D. Tiapkin, D. Belomestny, É. Moulines, A. Naumov, S. Samsonov, Y. Tang, M. Valko, and P. Ménard. From dirichlet to rubin: Optimistic exploration in rl without bonuses. In *International Conference on Machine Learning*, pages 21380–21431. PMLR, 2022.
- H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
 P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.
- H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

References VII

- R. Wang, R. R. Salakhutdinov, and L. Yang. Reinforcement learning with general value function approximation: Provably efficient approach via bounded eluder dimension. *Advances in Neural Information Processing Systems*, 33:6123–6135, 2020.
- Z. Yao, R. Y. Aminabadi, O. Ruwase, S. Rajbhandari, X. Wu, A. A. Awan, J. Rasley, M. Zhang, C. Li, C. Holmes, et al. Deepspeed-chat: Easy, fast and affordable rlhf training of chatgpt-like models at all scales. arXiv preprint arXiv:2308.01320, 2023.
- T. Zhang. Feel-good thompson sampling for contextual bandits and reinforcement learning. *SIAM Journal on Mathematics of Data Science*, 4(2):834–857, 2022.
- H. Zhong, W. Xiong, S. Zheng, L. Wang, Z. Wang, Z. Yang, and T. Zhang. Gec: A unified framework for interactive decision making in mdp, pomdp, and beyond. arXiv preprint arXiv:2211.01962, 2022.