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Reinforcement Learning Problem

Agent-Environment Interface. Experience:
A0, S1, A1, S2, . . . , At, St+1, . . .

Environment M = (S ,A, P)

▶ State St+1 ∼ P (· | St, At) for t = 0, 1, . . ..

Agent(S ,A, r,Dt)→ πt max long-term rewards

▶ Reward Rt+1 = r (St, At, St+1) preference

▶ Data Dt = Dt−1 ∪ {At−1, St} accumulated.

▶ Policy πt = Agent(S ,A, r,Dt).

▶ Action At ∼ πt(· | St);

▶ Objective πagent = (π0, π1, . . .) to maximize

E[
T−1

∑
t=0

Rt+1 | πagent, M] . (1)
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Motivating example: “multi-turn” LLM agent
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Challenges in Real-world RL Agent

Agent-Environment Interface. Experience:
A0, S1, A1, S2, . . . , At, St+1, . . .

Complex Environment:

▶ Large state space: (images, videos, audio, text,
high-dimensional feature vectors, etc.) |S| ≈ 10100

▶ Accumulated data D ↑ as interacting with the
environment.

Resource Constraints for Agent:

▶ Computation & memory (bounded per-step complexity)

▶ Experimental budgets (limited data collection, human
feedback, etc.)
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Development of RL Algorithms: A history of "Scale up!"

▶ Problem Scale up↑ : (S1) Larger↑ state space S ; (S2) Data D accumulated↑ .
▶ Modern RL Paradigm: (S1) Function Approximation (Deep Neural Networks);

(S2) Incremental update with SGD, Experience Replay and/or Target Network.

(K1) Bounded Per-step Complexity: ‘NOT Scale’ polynomially with |S| and |D|.
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Scalablity ̸= Efficiency: RLHF for LLMs

Bounded per-step complexity as Scale up ↑
▶ S ↑: more complex or longer conversations

▶ D ↑: adapt to extensive human feedbacks

Inefficiency ↓
▶ Data Hungary: 1.5M (Offline) and 1.7M (Online) in

LLaMA2 [TMS+23] Human feedback
– scarce & expensive

▶ Computation Costs: RLHF occupies most of the training
time. [YAR+23]

RL in Complex Environment | Scaling up! Then? 8 / 39



Practical advancements for “efficient” Deep RL

Algorithm Components

DDQN (16) Incremental SGD with experience replay (finite buffer) and target network
Rainbow (18) (DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.

BBF (23)
(DDQN) + Prioritized replay, Dueling networks, Distributional RL,
Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.

Table: The extra components used in various algorithms, e.g. DDQN [VHGS16], Rainbow [HMVH+18], BBF
[SCC+23].

▶ ✓ Scalable: e.g. DDQN use incremental SGD with experience replay and target network.

▶ ✗ Deployment inefficient: Complicated component and many heuristic tricks. Hard to tune.

▶ ✗ Provably inefficient: e.g. BBF use ϵ-greedy exploration strategy which need exponential many
sample in some environment, provably [Kak03, Str07, OVRRW19, DMM+22].
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Principled approaches for data efficieny

Sequential decision making under uncertainty with sublinear regret.
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Deep exploration in “multi-turn” LLM agent

Deep exploration

The decision may position the agent to more effectively acquire information over subsequent time steps.
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Data Efficient Exploration under Function Approximation (FA)

▶ Posterior sampling: data-efficient exploration strategy
Require conjugacy for posterior update
Feasible only in tabular MDP with dirichlet prior.

▶ Extending posterior sampling to general FA:
✗ Intractable computation: sample from intricate distribution [Zha22, DMZZ21, ZXZ+22].
✗ Unbounded memory and computation:
(1) Store entire history and retrain for each episode, e.g. RLSVI [OVRRW19], LSVI-PHE [ICN+21].
(2) Computation cost scale poly w. # episodes, say LMC-LSVI [ILX+24]

▶ Same challenges for OFU-based algorithms under general FA.
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Research question?

Towards fulfilling the promise of RL in real-world complex environment, can we design

(A1) Simple Algorithm easy to use and deploy (E3)

(A2) Efficient Algorithm low data (E1) and computation cost (E2)

(A3) Scalable Algorithm large S ↑ (S1) and accumulated D ↑ (S2)

“To complicate is easy. To simplify is difficult.” – Bruno Munari
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HyperAgent: Simple and Scalable Algorithmic Component

Algorithm Components

DDQN (16) Incremental SGD with experience replay (finite buffer) and target network
Rainbow (18) (DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.

BBF (23)
(DDQN) + Prioritized replay, Dueling networks, Distributional RL,
Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.

HyperAgent Hypermodel

Table: The extra techniques used in different algorithms, e.g. DDQN [VHGS16], Rainbow [HMVH+18], BBF
[SCC+23] and our HyperAgent.

▶ ✓ Simple: Only one additional component, hypermodel, compatiable with all feedforward DNN.

▶ ✓ Scalable: Incremental SGD under DNN function approximation, same as DDQN.

▶ ✓ Efficient: Incremental approximation of posteriors over general value function without conjugacy

▶ ⇒ data-efficient exploration via approximate posterior sampling w. bounded per-step computation.
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HyperAgent in Atari suite: Human-level performance (1 IQM)
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▶ ✓ Data efficient: 15% data consumption of DQN[VHGS16] by Deepmind. (1.5M interactions)
▶ ✓ Computation efficient: 5% model parameters of BBF[SCC+23] by Deepmind.
▶ Ensemble+ [OAC18, OVRRW19] achieves a mere 0.22 IQM score under 1.5M interactions but

necessitates double the parameters of HyperAgent.
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HyperAgent: Introducing Hypermodel

▶ Hypermodel: in general ( fθ , Pξ ) s.t.

fθ(x, ξ ) is an approximate posterior predictive sample on data x.
ξ ∼ Pξ

paramatric function reference distribution

Special case: predictive sampling from Linear-Gaussian model

Suppose θ∗ ∼ N(µ, Σ) where Σ represent the model uncertainty.
Box-Muller transform: Pξ = N(0, IM), θ = (A ∈ Rd×M, µ ∈ Rd) s.t. AA⊤ = Σ.

fθ(x, ξ) := ⟨x, µ + Aξ⟩ ∼ N(x⊤µ, x⊤AA⊤x)
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HyperAgent: Hypermodel for Feedforward Deep Networks

▶ Base model: DNN ⟨ ϕw(·) , wpredict⟩

Hidden Layers
𝜙!(⋅)

Predictor
Input 𝑥

𝑃! ∼ Index 𝜉

Base-model

𝑤"#$%&'((𝜉)Hypermodel

Output
𝑓)(𝑥, 𝜉)

▶ Hypermodel: Choose fθ(x, ξ) = ⟨ ϕw(x) , wpredict(ξ)⟩ with wpredict(ξ) = Aξ + b where ξ ∼ Pξ .

fθ(x, ξ) = ⟨ ϕw(x) , b⟩︸ ︷︷ ︸
‘mean’ µθ(x)

+ ⟨ ϕw(x) , Aξ⟩⟩︸ ︷︷ ︸
‘variance’ σθ(x,ξ)

The degree of uncertainty

Introducing HyperAgent: Simple, Efficient, Scalable 20 / 39



HyperAgent: Hypermodel for Deep RL

▶ Base model for DQN-type value function

fθ(s, a) = ⟨ ϕw(s) , θ(a)⟩

with parameters θ = {w, (θ(a) ∈ Rd) : a ∈ A }
Action-specific parameters for discrete action set A

▶ Hypermodel for randomized value function depends on (s, a) and a random index ξ ∼ Pξ :

fθ(s, a, ξ ) = ⟨ ϕw(s) , Aaξ + ba︸ ︷︷ ︸
θa(ξ)

⟩

with parameters θ = {w, (A(a) ∈ Rd×M, b(a)) : a ∈ A }.
Action-specific parameters

Random index ξ ∼ Pξ

▶ Tabular representation: ϕw(s) is fixed one-hot vector in R|S| where d = |S|. (Unification!)
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HyperAgent: Algorithmic Framework

Algorithm HyperAgent Framework

1: Input: Initial parameter θinit, hypermodel fθ with reference dist. Pξ and perturbation dist. Pz .

2: Init. θ = θ− = θinit, train step j = 0 and buffer D
3: for each episode k = 1, 2, . . . do
4: Sample index mapping ξk ∼ Pξ

5: Set t = 0 and Observe Sk,0 ∼ ρ
6: repeat
7: Select Ak,t = arg maxa∈A fθ(Sk,t, a, ξk(Sk,t) )

8: Observe Sk,t+1 from environment and Rk,t+1 = r(Sk,t, Ak,t, Sk,t+1).

9: Sample perturbation random vector zk,t+1 ∼ Pz

10: D.add((Sk,t, Ak,t, Rk,t+1, Sk,t+1, zk,t+1 ))

11: Increment step counter t← t + 1
12: θ, θ−, j← update(D, θ, θ−, ξ− = ξk , t, j)
13: until Sk,t = sterminal
14: end for
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HyperAgent: Objective for generic hypermodel ( fθ, Pξ)

▶ For a transition tuple d = (s, a, r, s′, z ) ∈ D and given index ξ, the temporal difference (TD) error:

ℓγ,σ( θ ; θ− , ξ− , ξ , d) =
(

fθ(s, a, ξ )− (r + σ ξ ⊤ z + γ max
a′∈A

fθ− (s
′, a′, ξ−(s′) ))

)2
(2)

main parameters, optimization variables

target parameters, fixed here and updated in an outer loop

control the std of injected noise

discounted factor

perturbation random vector

▶ ξ− : the target index mapping s.t. ξ−(s) one-to-one maps each state s ∈ S to a random vector

from Pξ , all of which are independent with ξ .

Introducing HyperAgent: Simple, Efficient, Scalable 23 / 39



HyperAgent: Objective and Training

▶ Integrate ξ over Equation (2) yields objective Lγ,σ,β where β ⩾ 0 is for the prior regularization

Lγ,σ,β(θ; θ−, ξ−, D) = Eξ∼Pξ
[ ∑
d∈D

1
|D| ℓ

γ,σ(θ; θ−, ξ−, ξ, d)] +
β

|D| ∥θ∥
2 (3)

▶ Optimize Equation (3) using mini-batch SGD (in practice, default Adam):

L̃(θ; θ−, ξ−, D̃ ) =
1
|Ξ̃| ∑

ξ∈ Ξ̃

 ∑
d∈ D̃

1
|D̃| ℓ

γ,σ(θ; θ−, ξ−, ξ, d)

+
β

|D| ∥θ∥
2 (4)

a batch of data D̃ sampled from D a batch of indices Ξ̃ sampled from Pξ

▶ Update the main parameters θ in each step according to Equation (4), and updates the target
parameters θ− periodically with less frequency. ⇒ Bounded per-step computation.
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Simple illustration for Deep Exploration: DeepSea Environment

Figure: DeepSea: The agent receives a reward of 0 for
↙, and a penalty of −(0.01/N) for ↘, where N denotes
the size of DeepSea. The agent will earn a reward of 1
upon reaching the lower-right corner but she do NOT
know in advances whether there is a reward until
reaching the goal.

exploration method expected episodes to learn
optimal Θ(N)

pure exploitation ∞
dithering (ϵ-greedy) Θ(2N)

optimistic Θ(N)

randomized Θ(N)

Expected number of episodes required to learn an
optimal policy for DeepSea with size N.
Optimistic: optimism in the face of uncertainty (OFU);
Randomized: randomizing the belief of the environment,
e.g. Posterior sampling
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HyperAgent: Efficiency in benchmarks (DeepSea)
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Comparison with Ensemble+ [OAC18, OVRRW19], HyperDQN [LLZ+22], ENN-DQN[OWA+23].

▶ ✓ Scalable as size N ↑. State representation: one-hot vector in high-dimension RN .
▶ ✓ Data efficient: HyperAgent the only and first achieving optimal episode complexity Θ(N).
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HyperAgent: comparison with other posterior approximation methods
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Figure: Comparison on approximate posterior sampling methods: variational approximation (SANE [AL21]),
Langevin Monte-Carlo (AdamLMCDQN [ILX+24]) and Ensemble+[OAC18, OVRRW19]
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How does HyperAgent achieve efficient deep exploration?

▶ Tabular HyperAgent: fθk
(s, a, ξ) = µk,sa + m̃k,sa

⊤ξ

▶ Incremental update with computation complexity O(M) :

m̃k,sa =

(Nk−1,sa + β) m̃k−1,sa + ∑
t∈ Ek−1,sa

σ zℓ,t+1

( Nk,sa + β)
∈ RM (5)

Visitation counts of (s, a) up to episode k

Perturbation random vector

Set of timesteps encoutering (s, a) in episode k− 1

Lemma 1 (Sequential posterior approximation).

For m̃k recursively defined in Equation (5) with z ∼ U (SM−1). For any k ⩾ 1, define the good event of
ε-approximation

Gk,sa(ε) :=
{
∥ m̃k,sa ∥2 ∈

(
(1− ε)

σ2

Nk,sa + β
, (1 + ε)

σ2

Nk,sa + β

)}
.

The joint event ∩(s,a)∈S×A ∩K
k=1 Gk,sa(ε) holds w.p. at least 1− δ if M ≃ ε−2 log(|S||A|T/δ) .
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How does HyperAgent achieve efficient deep exploration?

Stochastic Bellman backup for HyperAgent:

f
θ
(i+1)
k ,ξk

= Fγ
k f

θ
(i)
k ,ξk
≈ (rsa + γ⟨Vf

θ
(i)
k ,ξk

, P̂k,sa ⟩) + m̃⊤k,saξk(s) , (6)

where fθ,ξ− (s, a) = fθ(s, a, ξ−(s)) and VQ(s) := maxa Q(s, a), ∀s is the greedy value w.r.t. Q.

Empirical transition

“Randomized bonus”

W. std ∝
√

1
Nk,sa

i=6 i=5 i=4 i=3 i=2 i=1

s=1

s=2

s=3

s=4

St
at
es

(1) Nk,(4,↘) = 1. Other (s, a) almost infinite data.
(2) Propagation of uncertainty from later time period
to earlier time period.
Incentivize deep exploration.
(3) Darker shade indicates higher degree of uncertainty.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 30 / 39



HyperAgent: Theoretical Guarantees in RL

Practice in General FA (LB) Ω(
√

H3SAK) Theory in Tabular

Alg↓ Metric→ Tract’ Incre’ Effici’ Regret Per-step Comp’

PSRL ✗ ✗ ✗ (Bℜ) Õ(H2
√

SAK) O(S2 A)

Bayes-UCBVI ✗ ✗ ✗ (Fℜ) Õ(
√

H3SAK) O(S2 A)

RLSVI ✓ ✗ ✗ (Bℜ) Õ(H2
√

SAK) O(S2 A)

Ensemble+ ✓ ✓ ● N/A N/A
LMC-LSVI ✓ ✓ ● (Fℜ) Õ(H2

√
S3 A3K) Õ(KSA + S2 A)

HyperAgent ✓ ✓ ✓ (Bℜ) Õ(H2
√

SAK) ✓ O(log(K)SA + S2 A)

▶ Finite-horizon tabular RL: # states: S, # actions: A, # horizons: τ = H, # episodes: K

▶ Per-step computation poly(K) scaling is unacceptable under bounded computation. K ↑⇔ |D| ↑!
▶ HyperAgent is the first efficient and scalable RL agent, with practical efficiency as well as

logarithmic per-step computation Õ(log K) & sublinear regret in tabular setting.
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The novelty and difficulty in the mathemtical analysis: No Prior Art
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Time t = 1 Time t = 2 Time t = 3 Time t Time t + 1

Difficulty: Sequential dependence of high-dimensional R.V. due to the adaptive nature of Sequential Decision
Making.

First probability tool for sequential random projection.

A non-trivial martingale extension of the Johnson–Lindenstrauss (JL) lemma and subspace embedding.
[Li24a, Li24b, LXL24]
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Simple, Efficient, Scalable: Bridging Theory and Practice

HyperAgent is the first principled RL agent that is
▶ Simple, Efficient and Scalable;

▶ Empirically and Theoretically justified.

▶ No Prior Art. Set up a new benchmark.
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Promising future directions

Based on Li, Y., Xu, J., Han, L., & Luo, Z. Q. (2024). HyperA-
gent: A Simple, Scalable, Efficient and Provable Reinforcement
Learning Framework for Complex Environments. arXiv preprint
arXiv:2402.10228.

▶ Integrate actor-critic type of deep RL framework with HyperAgent for continuous control.

▶ Integrate transformer-based model with HyperAgent is also doable.

– LLM-based Agent!

– Data-efficient RLHF! (Efficient exploration for LLMs [DAHVR24])

▶ Extension to RL under Linear Function Approximation pose no much more difficulty.

▶ Extension to function approximation with generalized linear model and neural tangent kernel with
SGD update is possible. Further bridging the gap!
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