
HyperAgent: A Simple, Efficient, Scalable and Provable
RL framework for Complex Environment

Yingru Li

Academic webpage: https://richardli.xyz/
The Chinese University of Hong Kong, Shenzhen, China

Informs Optimization Society Conference, March 23, 2024

Jiawei Xu Zhi-Quan Luo arXiv:2402.10228

https://richardli.xyz/

Outline

RL in Complex Environment
Scaling up! Then?

Introducing HyperAgent: Simple, Efficient, Scalable
Insights and theoretical analysis

RL in Complex Environment 2 / 39

Reinforcement Learning Problem

Agent-Environment Interface. Experience:
A0, S1, A1, S2, . . . , At, St+1, . . .

Environment M = (S ,A, P)

▶ State St+1 ∼ P (· | St, At) for t = 0, 1,

Agent(S ,A, r,Dt)→ πt max long-term rewards

▶ Reward Rt+1 = r (St, At, St+1) preference

▶ Data Dt = Dt−1 ∪ {At−1, St} accumulated.

▶ Policy πt = Agent(S ,A, r,Dt).

▶ Action At ∼ πt(· | St);

▶ Objective πagent = (π0, π1, . . .) to maximize

E[
T−1

∑
t=0

Rt+1 | πagent, M] . (1)

RL in Complex Environment 3 / 39

Motivating example: “multi-turn” LLM agent

RL in Complex Environment 4 / 39

Challenges in Real-world RL Agent

Agent-Environment Interface. Experience:
A0, S1, A1, S2, . . . , At, St+1, . . .

Complex Environment:

▶ Large state space: (images, videos, audio, text,
high-dimensional feature vectors, etc.) |S| ≈ 10100

▶ Accumulated data D ↑ as interacting with the
environment.

Resource Constraints for Agent:

▶ Computation & memory (bounded per-step complexity)

▶ Experimental budgets (limited data collection, human
feedback, etc.)

RL in Complex Environment 5 / 39

Outline

RL in Complex Environment
Scaling up! Then?

Introducing HyperAgent: Simple, Efficient, Scalable
Insights and theoretical analysis

RL in Complex Environment | Scaling up! Then? 6 / 39

Development of RL Algorithms: A history of "Scale up!"

▶ Problem Scale up↑ : (S1) Larger↑ state space S ; (S2) Data D accumulated↑ .
▶ Modern RL Paradigm: (S1) Function Approximation (Deep Neural Networks);

(S2) Incremental update with SGD, Experience Replay and/or Target Network.

(K1) Bounded Per-step Complexity: ‘NOT Scale’ polynomially with |S| and |D|.

RL in Complex Environment | Scaling up! Then? 7 / 39

Scalablity ̸= Efficiency: RLHF for LLMs

Bounded per-step complexity as Scale up ↑
▶ S ↑: more complex or longer conversations

▶ D ↑: adapt to extensive human feedbacks

Inefficiency ↓
▶ Data Hungary: 1.5M (Offline) and 1.7M (Online) in

LLaMA2 [TMS+23] Human feedback
– scarce & expensive

▶ Computation Costs: RLHF occupies most of the training
time. [YAR+23]

RL in Complex Environment | Scaling up! Then? 8 / 39

Practical advancements for “efficient” Deep RL

Algorithm Components

DDQN (16) Incremental SGD with experience replay (finite buffer) and target network
Rainbow (18) (DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.

BBF (23)
(DDQN) + Prioritized replay, Dueling networks, Distributional RL,
Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.

Table: The extra components used in various algorithms, e.g. DDQN [VHGS16], Rainbow [HMVH+18], BBF
[SCC+23].

▶ ✓ Scalable: e.g. DDQN use incremental SGD with experience replay and target network.

▶ ✗ Deployment inefficient: Complicated component and many heuristic tricks. Hard to tune.

▶ ✗ Provably inefficient: e.g. BBF use ϵ-greedy exploration strategy which need exponential many
sample in some environment, provably [Kak03, Str07, OVRRW19, DMM+22].

RL in Complex Environment | Scaling up! Then? 9 / 39

Principled approaches for data efficieny

Sequential decision making under uncertainty with sublinear regret.

RL in Complex Environment | Scaling up! Then? 10 / 39

Deep exploration in “multi-turn” LLM agent

Deep exploration

The decision may position the agent to more effectively acquire information over subsequent time steps.

RL in Complex Environment | Scaling up! Then? 11 / 39

Data Efficient Exploration under Function Approximation (FA)

▶ Posterior sampling: data-efficient exploration strategy
Require conjugacy for posterior update
Feasible only in tabular MDP with dirichlet prior.

▶ Extending posterior sampling to general FA:
✗ Intractable computation: sample from intricate distribution [Zha22, DMZZ21, ZXZ+22].
✗ Unbounded memory and computation:
(1) Store entire history and retrain for each episode, e.g. RLSVI [OVRRW19], LSVI-PHE [ICN+21].
(2) Computation cost scale poly w. # episodes, say LMC-LSVI [ILX+24]

▶ Same challenges for OFU-based algorithms under general FA.

RL in Complex Environment | Scaling up! Then? 12 / 39

RL in Complex Environment | Scaling up! Then? 13 / 39

Research question?

Towards fulfilling the promise of RL in real-world complex environment, can we design

(A1) Simple Algorithm easy to use and deploy (E3)

(A2) Efficient Algorithm low data (E1) and computation cost (E2)

(A3) Scalable Algorithm large S ↑ (S1) and accumulated D ↑ (S2)

“To complicate is easy. To simplify is difficult.” – Bruno Munari

RL in Complex Environment | Scaling up! Then? 14 / 39

RL in Complex Environment | Scaling up! Then? 15 / 39

Outline

RL in Complex Environment
Scaling up! Then?

Introducing HyperAgent: Simple, Efficient, Scalable
Insights and theoretical analysis

Introducing HyperAgent: Simple, Efficient, Scalable 16 / 39

HyperAgent: Simple and Scalable Algorithmic Component

Algorithm Components

DDQN (16) Incremental SGD with experience replay (finite buffer) and target network
Rainbow (18) (DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.

BBF (23)
(DDQN) + Prioritized replay, Dueling networks, Distributional RL,
Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.

HyperAgent Hypermodel

Table: The extra techniques used in different algorithms, e.g. DDQN [VHGS16], Rainbow [HMVH+18], BBF
[SCC+23] and our HyperAgent.

▶ ✓ Simple: Only one additional component, hypermodel, compatiable with all feedforward DNN.

▶ ✓ Scalable: Incremental SGD under DNN function approximation, same as DDQN.

▶ ✓ Efficient: Incremental approximation of posteriors over general value function without conjugacy

▶ ⇒ data-efficient exploration via approximate posterior sampling w. bounded per-step computation.

Introducing HyperAgent: Simple, Efficient, Scalable 17 / 39

HyperAgent in Atari suite: Human-level performance (1 IQM)

106 107

Parameters

0.0

0.2

0.4

0.6

0.8

1.0

#
D

at
a

×107

HyperAgent

DDQN†

Rainbow

EfficientZero BBF
HyperAgentHyperAgent

▶ ✓ Data efficient: 15% data consumption of DQN[VHGS16] by Deepmind. (1.5M interactions)
▶ ✓ Computation efficient: 5% model parameters of BBF[SCC+23] by Deepmind.
▶ Ensemble+ [OAC18, OVRRW19] achieves a mere 0.22 IQM score under 1.5M interactions but

necessitates double the parameters of HyperAgent.
Introducing HyperAgent: Simple, Efficient, Scalable 18 / 39

HyperAgent: Introducing Hypermodel

▶ Hypermodel: in general (fθ , Pξ) s.t.

fθ(x, ξ) is an approximate posterior predictive sample on data x.
ξ ∼ Pξ

paramatric function reference distribution

Special case: predictive sampling from Linear-Gaussian model

Suppose θ∗ ∼ N(µ, Σ) where Σ represent the model uncertainty.
Box-Muller transform: Pξ = N(0, IM), θ = (A ∈ Rd×M, µ ∈ Rd) s.t. AA⊤ = Σ.

fθ(x, ξ) := ⟨x, µ + Aξ⟩ ∼ N(x⊤µ, x⊤AA⊤x)

Introducing HyperAgent: Simple, Efficient, Scalable 19 / 39

HyperAgent: Hypermodel for Feedforward Deep Networks

▶ Base model: DNN ⟨ ϕw(·) , wpredict⟩

Hidden Layers
𝜙!(⋅)

Predictor
Input 𝑥

𝑃! ∼ Index 𝜉

Base-model

𝑤"#$%&'((𝜉)Hypermodel

Output
𝑓)(𝑥, 𝜉)

▶ Hypermodel: Choose fθ(x, ξ) = ⟨ ϕw(x) , wpredict(ξ)⟩ with wpredict(ξ) = Aξ + b where ξ ∼ Pξ .

fθ(x, ξ) = ⟨ ϕw(x) , b⟩︸ ︷︷ ︸
‘mean’ µθ(x)

+ ⟨ ϕw(x) , Aξ⟩⟩︸ ︷︷ ︸
‘variance’ σθ(x,ξ)

The degree of uncertainty

Introducing HyperAgent: Simple, Efficient, Scalable 20 / 39

HyperAgent: Hypermodel for Deep RL

▶ Base model for DQN-type value function

fθ(s, a) = ⟨ ϕw(s) , θ(a)⟩

with parameters θ = {w, (θ(a) ∈ Rd) : a ∈ A }
Action-specific parameters for discrete action set A

▶ Hypermodel for randomized value function depends on (s, a) and a random index ξ ∼ Pξ :

fθ(s, a, ξ) = ⟨ ϕw(s) , Aaξ + ba︸ ︷︷ ︸
θa(ξ)

⟩

with parameters θ = {w, (A(a) ∈ Rd×M, b(a)) : a ∈ A }.
Action-specific parameters

Random index ξ ∼ Pξ

▶ Tabular representation: ϕw(s) is fixed one-hot vector in R|S| where d = |S|. (Unification!)

Introducing HyperAgent: Simple, Efficient, Scalable 21 / 39

HyperAgent: Algorithmic Framework

Algorithm HyperAgent Framework

1: Input: Initial parameter θinit, hypermodel fθ with reference dist. Pξ and perturbation dist. Pz .

2: Init. θ = θ− = θinit, train step j = 0 and buffer D
3: for each episode k = 1, 2, . . . do
4: Sample index mapping ξk ∼ Pξ

5: Set t = 0 and Observe Sk,0 ∼ ρ
6: repeat
7: Select Ak,t = arg maxa∈A fθ(Sk,t, a, ξk(Sk,t))

8: Observe Sk,t+1 from environment and Rk,t+1 = r(Sk,t, Ak,t, Sk,t+1).

9: Sample perturbation random vector zk,t+1 ∼ Pz

10: D.add((Sk,t, Ak,t, Rk,t+1, Sk,t+1, zk,t+1))

11: Increment step counter t← t + 1
12: θ, θ−, j← update(D, θ, θ−, ξ− = ξk , t, j)
13: until Sk,t = sterminal
14: end for

Introducing HyperAgent: Simple, Efficient, Scalable 22 / 39

HyperAgent: Objective for generic hypermodel (fθ, Pξ)

▶ For a transition tuple d = (s, a, r, s′, z) ∈ D and given index ξ, the temporal difference (TD) error:

ℓγ,σ(θ ; θ− , ξ− , ξ , d) =
(

fθ(s, a, ξ)− (r + σ ξ ⊤ z + γ max
a′∈A

fθ− (s
′, a′, ξ−(s′)))

)2
(2)

main parameters, optimization variables

target parameters, fixed here and updated in an outer loop

control the std of injected noise

discounted factor

perturbation random vector

▶ ξ− : the target index mapping s.t. ξ−(s) one-to-one maps each state s ∈ S to a random vector

from Pξ , all of which are independent with ξ .

Introducing HyperAgent: Simple, Efficient, Scalable 23 / 39

HyperAgent: Objective and Training

▶ Integrate ξ over Equation (2) yields objective Lγ,σ,β where β ⩾ 0 is for the prior regularization

Lγ,σ,β(θ; θ−, ξ−, D) = Eξ∼Pξ
[∑
d∈D

1
|D| ℓ

γ,σ(θ; θ−, ξ−, ξ, d)] +
β

|D| ∥θ∥
2 (3)

▶ Optimize Equation (3) using mini-batch SGD (in practice, default Adam):

L̃(θ; θ−, ξ−, D̃) =
1
|Ξ̃| ∑

ξ∈ Ξ̃

 ∑
d∈ D̃

1
|D̃| ℓ

γ,σ(θ; θ−, ξ−, ξ, d)

+
β

|D| ∥θ∥
2 (4)

a batch of data D̃ sampled from D a batch of indices Ξ̃ sampled from Pξ

▶ Update the main parameters θ in each step according to Equation (4), and updates the target
parameters θ− periodically with less frequency. ⇒ Bounded per-step computation.

Introducing HyperAgent: Simple, Efficient, Scalable 24 / 39

Simple illustration for Deep Exploration: DeepSea Environment

Figure: DeepSea: The agent receives a reward of 0 for
↙, and a penalty of −(0.01/N) for ↘, where N denotes
the size of DeepSea. The agent will earn a reward of 1
upon reaching the lower-right corner but she do NOT
know in advances whether there is a reward until
reaching the goal.

exploration method expected episodes to learn
optimal Θ(N)

pure exploitation ∞
dithering (ϵ-greedy) Θ(2N)

optimistic Θ(N)

randomized Θ(N)

Expected number of episodes required to learn an
optimal policy for DeepSea with size N.
Optimistic: optimism in the face of uncertainty (OFU);
Randomized: randomizing the belief of the environment,
e.g. Posterior sampling

Introducing HyperAgent: Simple, Efficient, Scalable 25 / 39

HyperAgent: Efficiency in benchmarks (DeepSea)

20 30 40 50 60 70 80 90 100 110 120
Size

0

2

4

6

8

10

E
p

is
od

es
to

L
ea

rn

×103 DeepSea

Ensemble+ ENNDQN HyperDQN HyperAgent

Comparison with Ensemble+ [OAC18, OVRRW19], HyperDQN [LLZ+22], ENN-DQN[OWA+23].

▶ ✓ Scalable as size N ↑. State representation: one-hot vector in high-dimension RN .
▶ ✓ Data efficient: HyperAgent the only and first achieving optimal episode complexity Θ(N).

Introducing HyperAgent: Simple, Efficient, Scalable 26 / 39

HyperAgent: comparison with other posterior approximation methods

0 0.5M 1.0M 1.5M 2M
0

500

1000

1500

2000

2500

Ep
iso

de
 R

et
ur

n

Alien

0 0.5M 1.0M 1.5M 2M
0

10

20

30

Freeway

0 0.5M 1.0M 1.5M 2M
0

200

400

600

Gravitar

0 0.5M 1.0M 1.5M 2M
0

2500

5000

7500

10000

12500

Hero

0 0.5M 1.0M 1.5M 2M
Num of Steps

1250

1000

750

500

250

0

Ep
iso

de
 R

et
ur

n

Pitfall

0 0.5M 1.0M 1.5M 2M
Num of Steps

0

2500

5000

7500

10000

12500

Qbert

0 0.5M 1.0M 1.5M 2M
Num of Steps

0

1000

2000

3000

Solaris

0 0.5M 1.0M 1.5M 2M
Num of Steps

0

100

200

300

400
Venture

Variational LangevinMC Ensemble+ Rainbow HyperAgent

Figure: Comparison on approximate posterior sampling methods: variational approximation (SANE [AL21]),
Langevin Monte-Carlo (AdamLMCDQN [ILX+24]) and Ensemble+[OAC18, OVRRW19]

Introducing HyperAgent: Simple, Efficient, Scalable 27 / 39

Outline

RL in Complex Environment
Scaling up! Then?

Introducing HyperAgent: Simple, Efficient, Scalable
Insights and theoretical analysis

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 28 / 39

How does HyperAgent achieve efficient deep exploration?

▶ Tabular HyperAgent: fθk
(s, a, ξ) = µk,sa + m̃k,sa

⊤ξ

▶ Incremental update with computation complexity O(M) :

m̃k,sa =

(Nk−1,sa + β) m̃k−1,sa + ∑
t∈ Ek−1,sa

σ zℓ,t+1

(Nk,sa + β)
∈ RM (5)

Visitation counts of (s, a) up to episode k

Perturbation random vector

Set of timesteps encoutering (s, a) in episode k− 1

Lemma 1 (Sequential posterior approximation).

For m̃k recursively defined in Equation (5) with z ∼ U (SM−1). For any k ⩾ 1, define the good event of
ε-approximation

Gk,sa(ε) :=
{
∥ m̃k,sa ∥2 ∈

(
(1− ε)

σ2

Nk,sa + β
, (1 + ε)

σ2

Nk,sa + β

)}
.

The joint event ∩(s,a)∈S×A ∩K
k=1 Gk,sa(ε) holds w.p. at least 1− δ if M ≃ ε−2 log(|S||A|T/δ) .

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 29 / 39

How does HyperAgent achieve efficient deep exploration?

Stochastic Bellman backup for HyperAgent:

f
θ
(i+1)
k ,ξk

= Fγ
k f

θ
(i)
k ,ξk
≈ (rsa + γ⟨Vf

θ
(i)
k ,ξk

, P̂k,sa ⟩) + m̃⊤k,saξk(s) , (6)

where fθ,ξ− (s, a) = fθ(s, a, ξ−(s)) and VQ(s) := maxa Q(s, a), ∀s is the greedy value w.r.t. Q.

Empirical transition

“Randomized bonus”

W. std ∝
√

1
Nk,sa

i=6 i=5 i=4 i=3 i=2 i=1

s=1

s=2

s=3

s=4

St
at
es

(1) Nk,(4,↘) = 1. Other (s, a) almost infinite data.
(2) Propagation of uncertainty from later time period
to earlier time period.
Incentivize deep exploration.
(3) Darker shade indicates higher degree of uncertainty.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 30 / 39

HyperAgent: Theoretical Guarantees in RL

Practice in General FA (LB) Ω(
√

H3SAK) Theory in Tabular

Alg↓ Metric→ Tract’ Incre’ Effici’ Regret Per-step Comp’

PSRL ✗ ✗ ✗ (Bℜ) Õ(H2
√

SAK) O(S2 A)

Bayes-UCBVI ✗ ✗ ✗ (Fℜ) Õ(
√

H3SAK) O(S2 A)

RLSVI ✓ ✗ ✗ (Bℜ) Õ(H2
√

SAK) O(S2 A)

Ensemble+ ✓ ✓ ● N/A N/A
LMC-LSVI ✓ ✓ ● (Fℜ) Õ(H2

√
S3 A3K) Õ(KSA + S2 A)

HyperAgent ✓ ✓ ✓ (Bℜ) Õ(H2
√

SAK) ✓ O(log(K)SA + S2 A)

▶ Finite-horizon tabular RL: # states: S, # actions: A, # horizons: τ = H, # episodes: K

▶ Per-step computation poly(K) scaling is unacceptable under bounded computation. K ↑⇔ |D| ↑!
▶ HyperAgent is the first efficient and scalable RL agent, with practical efficiency as well as

logarithmic per-step computation Õ(log K) & sublinear regret in tabular setting.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 31 / 39

The novelty and difficulty in the mathemtical analysis: No Prior Art

Z0

x1

z1

x2

z2

x3

z3

. . .

. . .

xt

zt

xt+1

Time t = 1 Time t = 2 Time t = 3 Time t Time t + 1

Difficulty: Sequential dependence of high-dimensional R.V. due to the adaptive nature of Sequential Decision
Making.

First probability tool for sequential random projection.

A non-trivial martingale extension of the Johnson–Lindenstrauss (JL) lemma and subspace embedding.
[Li24a, Li24b, LXL24]

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 32 / 39

Simple, Efficient, Scalable: Bridging Theory and Practice

HyperAgent is the first principled RL agent that is
▶ Simple, Efficient and Scalable;

▶ Empirically and Theoretically justified.

▶ No Prior Art. Set up a new benchmark.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 33 / 39

Promising future directions

Based on Li, Y., Xu, J., Han, L., & Luo, Z. Q. (2024). HyperA-
gent: A Simple, Scalable, Efficient and Provable Reinforcement
Learning Framework for Complex Environments. arXiv preprint
arXiv:2402.10228.

▶ Integrate actor-critic type of deep RL framework with HyperAgent for continuous control.

▶ Integrate transformer-based model with HyperAgent is also doable.

– LLM-based Agent!

– Data-efficient RLHF! (Efficient exploration for LLMs [DAHVR24])

▶ Extension to RL under Linear Function Approximation pose no much more difficulty.

▶ Extension to function approximation with generalized linear model and neural tangent kernel with
SGD update is possible. Further bridging the gap!

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 34 / 39

References I

[AL21] Siddharth Aravindan and Wee Sun Lee. State-aware variational thompson sampling for
deep q-networks. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pages 124–132, 2021.

[DAHVR24] Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy.
Efficient exploration for llms. arXiv preprint arXiv:2402.00396, 2024.

[DMM+22] Chris Dann, Yishay Mansour, Mehryar Mohri, Ayush Sekhari, and Karthik Sridharan.
Guarantees for epsilon-greedy reinforcement learning with function approximation. In
International conference on machine learning, pages 4666–4689. PMLR, 2022.

[DMZZ21] Christoph Dann, Mehryar Mohri, Tong Zhang, and Julian Zimmert. A provably efficient
model-free posterior sampling method for episodic reinforcement learning. Advances in
Neural Information Processing Systems, 34:12040–12051, 2021.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 35 / 39

References II

[HMVH+18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will
Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[ICN+21] Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina
Precup, and Lin Yang. Randomized exploration in reinforcement learning with general
value function approximation. In International Conference on Machine Learning, pages
4607–4616. PMLR, 2021.

[ILX+24] Haque Ishfaq, Qingfeng Lan, Pan Xu, A. Rupam Mahmood, Doina Precup, Anima
Anandkumar, and Kamyar Azizzadenesheli. Provable and practical: Efficient exploration in
reinforcement learning via langevin monte carlo. In The Twelfth International Conference
on Learning Representations, 2024.

[Kak03] Sham Machandranath Kakade. On the sample complexity of reinforcement learning.
University of London, University College London (United Kingdom), 2003.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 36 / 39

References III

[Li24a] Yingru Li. Probability Tools for Sequential Random Projection. 2024.

[Li24b] Yingru Li. Simple, unified analysis of Johnson-Lindenstrauss with applications. under
review, 2024.

[LLZ+22] Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, and Zhi-Quan Luo. HyperDQN: A
randomized exploration method for deep reinforcement learning. In International
Conference on Learning Representations, 2022.

[LXL24] Yingru Li, Jiawei Xu, and Zhi-Quan Luo. Approximate Thompson sampling via
Hypermodel and Index sampling. To appear on arXiv, 2024.

[OAC18] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep
reinforcement learning. Advances in Neural Information Processing Systems, 31, 2018.

[OVRRW19] Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via
randomized value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 37 / 39

References IV

[OWA+23] Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza
Ibrahimi, Xiuyuan Lu, and Benjamin Van Roy. Approximate thompson sampling via
epistemic neural networks. arXiv preprint arXiv:2302.09205, 2023.

[SCC+23] Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh
Agarwal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with
human-level efficiency. In International Conference on Machine Learning, pages
30365–30380. PMLR, 2023.

[Str07] Alexander L Strehl. Probably approximately correct (PAC) exploration in reinforcement
learning. PhD thesis, Rutgers University-Graduate School-New Brunswick, 2007.

[TMS+23] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama
2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 38 / 39

References V

[VHGS16] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

[YAR+23] Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajbhandari, Xiaoxia Wu,
Ammar Ahmad Awan, Jeff Rasley, Minjia Zhang, Conglong Li, Connor Holmes, et al.
Deepspeed-chat: Easy, fast and affordable rlhf training of chatgpt-like models at all scales.
arXiv preprint arXiv:2308.01320, 2023.

[Zha22] Tong Zhang. Feel-good thompson sampling for contextual bandits and reinforcement
learning. SIAM Journal on Mathematics of Data Science, 4(2):834–857, 2022.

[ZXZ+22] Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, and
Tong Zhang. Gec: A unified framework for interactive decision making in mdp, pomdp,
and beyond. arXiv preprint arXiv:2211.01962, 2022.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis 39 / 39

	RL in Complex Environment
	Scaling up! Then?

	Introducing HyperAgent: Simple, Efficient, Scalable
	Insights and theoretical analysis

	References

