HyperAgent: A Simple, Efficient, Scalable and Provable RL framework for Complex Environment

Yingru Li

Academic webpage: https://richardli.xyz/ The Chinese University of Hong Kong, Shenzhen, China

Informs Optimization Society Conference, March 23, 2024

Jiawei Xu

Zhi-Quan Luo

arXiv:2402.10228

RL in Complex Environment

Scaling up! Then?

Introducing HyperAgent: Simple, Efficient, Scalable Insights and theoretical analysis

Reinforcement Learning Problem

Agent-Environment Interface. Experience: $A_0, S_1, A_1, S_2, \ldots, A_t, S_{t+1}, \ldots$

Environment M = (S, A, P)▶ State $S_{t+1} \sim P(\cdot | S_t, A_t)$ for t = 0, 1, ...

Agent($\mathcal{S}, \mathcal{A}, r, \mathcal{D}_t$) $\rightarrow \pi_t \max$ long-term rewards

- ▶ Reward $R_{t+1} = r(S_t, A_t, S_{t+1})$ preference ▶ Data $D_t = D_{t-1} \cup \{A_{t-1}, S_t\}$ accumulated.

• Policy
$$\pi_t = \operatorname{Agent}(\mathcal{S}, \mathcal{A}, r, \mathcal{D}_t).$$

• Action
$$A_t \sim \pi_t(\cdot \mid S_t)$$
;

• **Objective** $\pi_{agent} = (\pi_0, \pi_1, ...)$ to maximize

$$\mathbb{E}\left[\sum_{t=0}^{T-1} R_{t+1} \mid \pi_{\text{agent}}, M\right] \,. \tag{1}$$

Motivating example: "multi-turn" LLM agent

RL in Complex Environment

Agent-Environment Interface. Experience: $A_0, S_1, A_1, S_2, \ldots, A_t, S_{t+1}, \ldots$

Complex Environment:

- ► Large state space: (images, videos, audio, text, high-dimensional feature vectors, etc.) $|S| \approx 10^{100}$
- ► Accumulated data D ↑ as interacting with the environment.

Resource Constraints for Agent:

- Computation & memory (bounded per-step complexity)
- Experimental budgets (limited data collection, human feedback, etc.)

RL in Complex Environment Scaling up! Then?

Introducing HyperAgent: Simple, Efficient, Scalable Insights and theoretical analysis

RL in Complex Environment | Scaling up! Then?

Development of RL Algorithms: A history of "Scale up!"

- ▶ Problem Scale up \uparrow : (S1) Larger \uparrow state space S; (S2) Data D accumulated \uparrow .
- Modern RL Paradigm: (S1) Function Approximation (Deep Neural Networks); (S2) Incremental update with SGD, Experience Replay and/or Target Network.

(K1) Bounded Per-step Complexity: 'NOT Scale' polynomially with |S| and |D|.

Table 4: E2E time breakdown for training a DeepSpeed-Chat on a single DGX node with 8 N	a 13 billion VIDIA A10	parameter 0-40G GPI	ChatGPT 8.	model via
Model Sizes	Step 1	Step 2	Step 3	Total
Actor: OPT-13B, Reward: OPT-350M	2.5hr	0.25hr	10.8hr	13.6hr
Table 5: E2E time breakdown for training a DeepSpeed-Chat on 8 DGX nodes with 8 NVIDI	a 66 billion A A100-800	parameter GPUs/no	ChatGPT le.	model via
Model Sizes	Step 1	Step 2	Step 3	Total
Actor: OPT-66B, Reward: OPT-350M	82 mins	5 mins	7.5hr	9hr

Bounded per-step complexity as Scale up \uparrow

- $S \uparrow$: more complex or longer conversations
- \mathcal{D} \uparrow : adapt to extensive human feedbacks

Inefficiency \downarrow

- Data Hungary: 1.5M (Offline) and 1.7M (Online) in LLaMA2 [TMS⁺23] Human feedback
 - scarce & expensive
- Computation Costs: RLHF occupies most of the training time. [YAR⁺23]

Algorithm	Com	ponents
DDQN (16	Incre	mental SGD with experience replay (finite buffer) and target network
Rainbow <mark>(18</mark>	(DD	QN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.
BBF (23)	(DD	QN) + Prioritized replay, Dueling networks, Distributional RL,
	Self-	Prediction, Harder resets, Larger network, Annealing hyper-parameters.

Table: The extra components used in various algorithms, e.g. DDQN [VHGS16], Rainbow [HMVH+18], BBF[SCC+23].

- **Scalable**: e.g. DDQN use incremental SGD with experience replay and target network.
- **>** X Deployment inefficient: Complicated component and many heuristic tricks. Hard to tune.
- X Provably inefficient: e.g. BBF use *c*-greedy exploration strategy which need exponential many sample in some environment, provably [Kak03, Str07, OVRRW19, DMM⁺22].

R.A. Fisher, Willi R.A. Fisher, Willi R.A. Fisher, Willi T. L. Lai and H. R. Sequential desig	R.A. Fisher, William R. Tl T. L. Lai and H. Robbins (Sequential design and a	n R. Thompson (30s) Joins (80s) E3/PSRL/UCRL and allocations (MAB) Tabular RL		Eluder dimension/Information Ratio Bellman Rank/Bilinear Structure Decoupling coefficient/DEC/GEC Structural assumption and Algorithms for RL with function approximation	
	Before 90s		2000	2014	
			Data First		

Sequential decision making under uncertainty with sublinear regret.

RL in Complex Environment | Scaling up! Then?

Deep exploration

The decision may position the agent to more effectively acquire information over subsequent time steps.

Posterior sampling: data-efficient exploration strategy Require conjugacy for posterior update Feasible only in tabular MDP with dirichlet prior.

- Extending posterior sampling to general FA:
 - **X** Intractable computation: sample from intricate distribution [Zha22, DMZZ21, ZXZ⁺22].
 - X Unbounded memory and computation:
 - (1) Store entire history and retrain for each episode, e.g. RLSVI [OVRRW19], LSVI-PHE [ICN⁺21].
 - (2) Computation cost scale poly w. # episodes, say LMC-LSVI [ILX⁺24]

Same challenges for OFU-based algorithms under general FA.

Towards fulfilling the promise of RL in real-world complex environment, can we design			
(A1) Simple Algorithm	easy to use and deploy (E3)		
(A2) Efficient Algorithm	low data (E1) and computation cost (E2)		
(A3) Scalable Algorithm	large $\mathcal{S} \uparrow$ (S1) and accumulated $\mathcal{D} \uparrow$ (S2)		

"To complicate is easy. To simplify is difficult."

– Bruno Munari

RL in Complex Environment Scaling up! Then?

Introducing HyperAgent: Simple, Efficient, Scalable

Insights and theoretical analysis

Algorithm	Components
DDQN (16)	Incremental SGD with experience replay (finite buffer) and target network
Rainbow <mark>(18)</mark>	(DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.
	(DDQN) + Prioritized replay, Dueling networks, Distributional RL,
DDF (23)	Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.
HyperAgent	Hypermodel

 Table:
 The extra techniques used in different algorithms, e.g. DDQN [VHGS16], Rainbow [HMVH⁺18], BBF [SCC⁺23] and our HyperAgent.

- ▶ ✓ Simple: Only one additional component, hypermodel, compatiable with all feedforward DNN.
- **Scalable**: Incremental SGD under DNN function approximation, same as DDQN.
- Figure 4 Content Approximation of posteriors over general value function without conjugacy
- ► \Rightarrow data-efficient exploration via approximate posterior sampling w. bounded per-step computation.

HyperAgent in Atari suite: Human-level performance (1 IQM)

- ▶ ✓ Data efficient: 15% data consumption of DQN[VHGS16] by Deepmind. (1.5M interactions)
- ► ✓ Computation efficient: 5% model parameters of BBF[SCC+23] by Deepmind.
- Ensemble+ [OAC18, OVRRW19] achieves a mere 0.22 IQM score under 1.5M interactions but necessitates double the parameters of HyperAgent.

HyperAgent: Introducing Hypermodel

 $f_{\theta}(x, \xi)$ is an approximate posterior predictive sample on data x. $\uparrow_{\xi} \sim P_{\xi}$

Special case: predictive sampling from Linear-Gaussian model Suppose $\theta^* \sim N(\mu, \Sigma)$ where Σ represent the model uncertainty. Box-Muller transform: $P_{\bar{\zeta}} = N(0, I_M)$, $\theta = (A \in \mathbb{R}^{d \times M}, \mu \in \mathbb{R}^d)$ s.t. $AA^{\top} = \Sigma$.

 $f_{\theta}(x,\xi) := \langle x, \mu + A\xi \rangle \sim N(x^{\top}\mu, x^{\top}AA^{\top}x)$

HyperAgent: Hypermodel for Feedforward Deep Networks

Base model: DNN $\langle \phi_w(\cdot), w_{\text{predict}} \rangle$

► Hypermodel: Choose $f_{\theta}(x,\xi) = \langle \phi_w(x), w_{\text{predict}}(\xi) \rangle$ with $w_{\text{predict}}(\xi) = A\xi + b$ where $\xi \sim P_{\xi}$.

$$f_{\theta}(x,\xi) = \underbrace{\langle \phi_{w}(x), b \rangle}_{\text{'mean'} \mu_{\theta}(x)} + \underbrace{\langle \phi_{w}(x), A\xi \rangle \rangle}_{\text{'variance'} \sigma_{\theta}(x,\xi)}$$

$$\uparrow \text{The degree of uncertainty}$$

HyperAgent: Hypermodel for Deep RL

Base model for DQN-type value function

$$f_{\theta}(s,a) = \langle \phi_w(s) , \theta^{(a)} \rangle$$

with parameters $\theta = \{w, (\theta^{(a)} \in \mathbb{R}^d) : a \in \mathcal{A}\}$

Action-specific parameters for discrete action set ${\mathcal A}$

Hypermodel for randomized value function depends on (s, a) and a random index $\xi \sim P_{\xi}$:

$$f_{\theta}(s, a, \xi) = \langle \phi_w(s), A^a \xi + b^a \rangle$$
Random index $\xi \sim P_{\xi}$

with parameters
$$\theta = \{w, (A^{(a)} \in \mathbb{R}^{d \times M}, b^{(a)}) : a \in \mathcal{A} \}.$$

Action-specific parameters

Tabular representation: $\phi_w(s)$ is fixed one-hot vector in $\mathbb{R}^{|S|}$ where d = |S|. (Unification!)

Algorithm HyperAgent Framework

- 1: Input: Initial parameter θ_{init} , hypermodel f_{θ} with reference dist. P_{ξ} and perturbation dist. P_{z} .
- 2: Init. $\theta = \theta^- = \theta_{\text{init}}$, train step j = 0 and buffer D
- 3: for each episode $k = 1, 2, \ldots$ do
- 4: Sample index mapping $\boldsymbol{\xi}_k \sim P_{\boldsymbol{\xi}}$
- 5: Set t=0 and Observe $\overline{S_{k,0}}\sim
 ho$
- 6: repeat

7: Select
$$A_{k,t} = \arg \max_{a \in \mathcal{A}} f_{\theta}(S_{k,t}, a, \boldsymbol{\xi}_k(S_{k,t}))$$

- 8: **Observe** $S_{k,t+1}$ from environment and $R_{k,t+1} = r(S_{k,t}, A_{k,t}, S_{k,t+1})$.
- 9: Sample perturbation random vector $\mathbf{z}_{k,t+1} \sim P_{\mathbf{z}}$

10:
$$D.add((S_{k,t}, A_{k,t}, R_{k,t+1}, S_{k,t+1}, \mathbf{z}_{k,t+1}))$$

11: Increment step counter $t \leftarrow t + 1$

12:
$$\theta, \theta^-, j \leftarrow \text{update}(D, \theta, \theta^-, \boldsymbol{\xi}^- = \boldsymbol{\xi}_k, t, j)$$

13: **until** $S_{k,t} = s_{\text{terminal}}$ 14: **end for**

HyperAgent: Objective for generic hypermodel (f_{θ}, P_{ξ})

from $P_{\boldsymbol{\xi}}$, all of which are **independent** with $\boldsymbol{\xi}$.

▶ Integrate ξ over Equation (2) yields objective $L^{\gamma,\sigma,\beta}$ where $\beta \ge 0$ is for the prior regularization

$$L^{\gamma,\sigma,\beta}(\theta;\theta^{-},\boldsymbol{\xi}^{-},D) = \mathbb{E}_{\boldsymbol{\xi}\sim P_{\boldsymbol{\xi}}}\left[\sum_{d\in D} \frac{1}{|D|}\ell^{\gamma,\sigma}(\theta;\theta^{-},\boldsymbol{\xi}^{-},\boldsymbol{\xi},d)\right] + \frac{\beta}{|D|}\|\theta\|^{2}$$
(3)

Optimize Equation (3) using mini-batch SGD (in practice, default Adam):

$$\tilde{L}(\theta; \theta^{-}, \boldsymbol{\xi}^{-}, \boldsymbol{\tilde{D}}) = \frac{1}{|\boldsymbol{\tilde{\Xi}}|} \sum_{\boldsymbol{\xi} \in \boldsymbol{\tilde{\Xi}}} \left(\sum_{d \in \boldsymbol{\tilde{D}}} \frac{1}{|\boldsymbol{\tilde{D}}|} \ell^{\gamma, \sigma}(\theta; \theta^{-}, \boldsymbol{\xi}^{-}, \boldsymbol{\xi}, d) \right) + \frac{\beta}{|\boldsymbol{D}|} \|\theta\|^{2}$$
(4)
a batch of data $\boldsymbol{\tilde{D}}$ sampled from \boldsymbol{D}
a batch of indices $\boldsymbol{\tilde{\Xi}}$ sampled from $P_{\boldsymbol{\xi}}$

▶ Update the main parameters θ in each step according to Equation (4), and updates the target parameters θ^- periodically with less frequency. \Rightarrow Bounded per-step computation.

Figure: DeepSea: The agent receives a reward of 0 for \checkmark , and a penalty of -(0.01/N) for \searrow , where N denotes the size of DeepSea. The agent will earn a reward of 1 upon reaching the lower-right corner but she do NOT know in advances whether there is a reward until reaching the goal.

exploration method	expected episodes to learn	
optimal	$\Theta(N)$	
pure exploitation	∞	
dithering (ϵ -greedy)	$\Theta(2^N)$	
optimistic	$\Theta(N)$	
randomized	$\Theta(N)$	

Expected number of episodes required to learn an optimal policy for DeepSea with size N. Optimistic: optimism in the face of uncertainty (**OFU**); Randomized: randomizing the belief of the environment, e.g. **Posterior sampling**

HyperAgent: Efficiency in benchmarks (DeepSea)

Comparison with Ensemble+ [OAC18, OVRRW19], HyperDQN [LLZ⁺22], ENN-DQN[OWA⁺23].

▶ ✓ Scalable as size $N \uparrow$. State representation: one-hot vector in high-dimension \mathbb{R}^N .

▶ ✓ Data efficient: HyperAgent the only and first achieving optimal episode complexity $\Theta(N)$. Introducing HyperAgent: Simple, Efficient, Scalable

HyperAgent: comparison with other posterior approximation methods

Figure: Comparison on approximate posterior sampling methods: variational approximation (SANE [AL21]), Langevin Monte-Carlo (AdamLMCDQN [ILX⁺24]) and Ensemble+[OAC18, OVRRW19]

RL in Complex Environment Scaling up! Then?

Introducing HyperAgent: Simple, Efficient, Scalable Insights and theoretical analysis

How does HyperAgent achieve efficient deep exploration?

► Tabular HyperAgent:
$$f_{\theta_k}(s, a, \xi) = \mu_{k,sa} + \frac{\tilde{m}_{k,sa}}{\tilde{\mu}_{k,sa}}$$

• Incremental update with computation complexity O(M) :

$$\tilde{m}_{k,sa} = \frac{(N_{k-1,sa} + \beta) \tilde{m}_{k-1,sa} + \sum_{t \in E_{k-1,sa}} \sigma \mathbf{z}_{\ell,t+1}}{(N_{k,sa} + \beta)} \in \mathbb{R}^{M}$$
(5)
Visitation counts of (s,a) up to episode k

Perturbation random vector

Lemma 1 (Sequential posterior approximation).

For \tilde{m}_k recursively defined in Equation (5) with $\mathbf{z} \sim \mathcal{U}(\mathbb{S}^{M-1})$. For any $k \ge 1$, define the good event of ε -approximation

$$\mathcal{G}_{k,sa}(\varepsilon) := \left\{ \| \frac{\tilde{m}_{k,sa}}{N_{k,sa}} \|^2 \in \left((1-\varepsilon) \frac{\sigma^2}{N_{k,sa}+\beta} \right), (1+\varepsilon) \frac{\sigma^2}{N_{k,sa}+\beta} \right) \right\}.$$

 $\textit{The joint event} \cap_{(s,a) \in \mathcal{S} \times \mathcal{A}} \cap_{k=1}^{K} \mathcal{G}_{k,sa}(\varepsilon) \textit{ holds w.p. at least } 1-\delta \textit{ if } M \simeq \varepsilon^{-2} \log(|\mathcal{S}||\mathcal{A}|T/\delta) \ .$

How does HyperAgent achieve efficient deep exploration?

where $f_{\theta,\xi^-}(s,a) = f_{\theta}(s,a,\xi^-(s))$ and $V_Q(s) := \max_a Q(s,a), \forall s$ is the greedy value w.r.t. Q.

N_{k,(4,→)} = 1. Other (s, a) almost infinite data.
 Propagation of uncertainty from later time period to earlier time period.
 Incentivize deep exploration.

(3) Darker shade indicates higher degree of uncertainty.

HyperAgent: Theoretical Guarantees in RL

	Practic	e in Gene	eral FA	$(LB) \ \Omega(\sqrt{H^3SAK})$	Theory in Tabular
$Alg{\downarrow} \; Metric{\rightarrow}$	Tract'	Incre'	Effici'	Regret	Per-step Comp'
PSRL	×	X	X	$(B\Re) \tilde{O}(H^2\sqrt{SAK})$	$O(S^2A)$
Bayes-UCBVI	×	×	×	$(F\Re) \ \tilde{O}(\sqrt{H^3SAK})$	$O(S^2A)$
RLSVI	1	×	×	$(B\Re) \ \tilde{O}(H^2\sqrt{SAK})$	$O(S^2A)$
Ensemble+	1	1	•	N/A	N/A
LMC-LSVI	1	1	•	$(F\Re) \tilde{O}(H^2\sqrt{S^3A^3K})$	$\tilde{O}(\mathbf{K}SA + S^2A)$
HyperAgent	1	 Image: A second s	 Image: A second s	$(B\Re) \ \tilde{O}(H^2\sqrt{SAK})$	$\checkmark O(\log(K)SA + S^2A)$

Finite-horizon tabular RL: # states: S, # actions: A, # horizons: $\tau = H$, # episodes: K

- ▶ Per-step computation poly(K) scaling is unacceptable under bounded computation. $K \uparrow \Leftrightarrow |\mathcal{D}| \uparrow !$
- HyperAgent is the first efficient and scalable RL agent, with practical efficiency as well as logarithmic per-step computation Õ(log K) & sublinear regret in tabular setting.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis

The novelty and difficulty in the mathemtical analysis: No Prior Art

Difficulty: Sequential dependence of high-dimensional R.V. due to the adaptive nature of Sequential Decision Making.

First probability tool for sequential random projection.

A non-trivial martingale extension of the Johnson–Lindenstrauss (JL) lemma and subspace embedding. [Li24a, Li24b, LXL24]

Simple, Efficient, Scalable: Bridging Theory and Practice

HyperAgent is the first principled RL agent that is

- Simple, Efficient and Scalable;
- **Empirically** and **Theoretically** justified.
- No Prior Art. Set up a new benchmark.

Introducing HyperAgent: Simple, Efficient, Scalable | Insights and theoretical analysis

Based on Li, Y., Xu, J., Han, L., & Luo, Z. Q. (2024). HyperAgent: A Simple, Scalable, Efficient and Provable Reinforcement Learning Framework for Complex Environments. arXiv preprint arXiv:2402.10228.

- Integrate actor-critic type of deep RL framework with HyperAgent for continuous control.
- Integrate transformer-based model with HyperAgent is also doable.
 - LLM-based Agent!
 - Data-efficient RLHF! (Efficient exploration for LLMs [DAHVR24])
- Extension to RL under Linear Function Approximation pose no much more difficulty.
- Extension to function approximation with generalized linear model and neural tangent kernel with SGD update is possible. Further bridging the gap!

- [AL21] Siddharth Aravindan and Wee Sun Lee. State-aware variational thompson sampling for deep q-networks. In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pages 124–132, 2021.
- [DAHVR24] Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient exploration for Ilms. *arXiv preprint arXiv:2402.00396*, 2024.
- [DMM⁺22] Chris Dann, Yishay Mansour, Mehryar Mohri, Ayush Sekhari, and Karthik Sridharan. Guarantees for epsilon-greedy reinforcement learning with function approximation. In International conference on machine learning, pages 4666–4689. PMLR, 2022.
- [DMZZ21] Christoph Dann, Mehryar Mohri, Tong Zhang, and Julian Zimmert. A provably efficient model-free posterior sampling method for episodic reinforcement learning. Advances in Neural Information Processing Systems, 34:12040–12051, 2021.

- [HMVH⁺18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep reinforcement learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.
 - [ICN⁺21] Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup, and Lin Yang. Randomized exploration in reinforcement learning with general value function approximation. In *International Conference on Machine Learning*, pages 4607–4616. PMLR, 2021.
 - [ILX⁺24] Haque Ishfaq, Qingfeng Lan, Pan Xu, A. Rupam Mahmood, Doina Precup, Anima Anandkumar, and Kamyar Azizzadenesheli. Provable and practical: Efficient exploration in reinforcement learning via langevin monte carlo. In *The Twelfth International Conference* on Learning Representations, 2024.
 - [Kak03] Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of London, University College London (United Kingdom), 2003.

- [Li24a] Yingru Li. Probability Tools for Sequential Random Projection. 2024.
- [Li24b] Yingru Li. Simple, unified analysis of Johnson-Lindenstrauss with applications. under review, 2024.
- [LLZ⁺22] Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, and Zhi-Quan Luo. HyperDQN: A randomized exploration method for deep reinforcement learning. In International Conference on Learning Representations, 2022.
 - [LXL24] Yingru Li, Jiawei Xu, and Zhi-Quan Luo. Approximate Thompson sampling via Hypermodel and Index sampling. To appear on arXiv, 2024.
- [OAC18] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement learning. *Advances in Neural Information Processing Systems*, 31, 2018.
- [OVRRW19] Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized value functions. *Journal of Machine Learning Research*, 20(124):1–62, 2019.

- [OWA⁺23] Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu, and Benjamin Van Roy. Approximate thompson sampling via epistemic neural networks. *arXiv preprint arXiv:2302.09205*, 2023.
- [SCC⁺23] Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agarwal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level efficiency. In *International Conference on Machine Learning*, pages 30365–30380. PMLR, 2023.
 - [Str07] Alexander L Strehl. *Probably approximately correct (PAC) exploration in reinforcement learning*. PhD thesis, Rutgers University-Graduate School-New Brunswick, 2007.
- [TMS⁺23] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

- [VHGS16] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.
- [YAR+23] Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajbhandari, Xiaoxia Wu, Ammar Ahmad Awan, Jeff Rasley, Minjia Zhang, Conglong Li, Connor Holmes, et al. Deepspeed-chat: Easy, fast and affordable rlhf training of chatgpt-like models at all scales. arXiv preprint arXiv:2308.01320, 2023.
 - [Zha22] Tong Zhang. Feel-good thompson sampling for contextual bandits and reinforcement learning. *SIAM Journal on Mathematics of Data Science*, 4(2):834–857, 2022.
- [ZXZ⁺22] Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, and Tong Zhang. Gec: A unified framework for interactive decision making in mdp, pomdp, and beyond. arXiv preprint arXiv:2211.01962, 2022.