HyperDQN: A Randomized Exploration for
Deep Reinforcement Learning

Yingru Li

yingruli@link.cuhk.edu.cn

NeurlPS 2021 Workshop on Ecological Theory of RL (Oral)

Ziniu Lit Yingru Litt Yushun Zhang! Tong Zhang? Zhi-Quan Luo!

[1] The Chinese University of Hong Kong, Shenzhen [2] Hong Kong University of Science and Technology

[1] Corresponding author

Contributions

» We present a practical randomized exploration method HyperDQN.

» Our experiments support that HyperDQN achieves significant improvements.

2/37

Contributions

» We present a practical randomized exploration method HyperDQN.

» Our experiments support that HyperDQN achieves significant improvements.

— HyperDQN achieves about 2x improvement than baselines over 56 tasks in Atari suite.

2/37

Contributions

» We present a practical randomized exploration method HyperDQN.

» Our experiments support that HyperDQN achieves significant improvements.

— HyperDQN achieves about 2x improvement than baselines over 56 tasks in Atari suite.
— HyperDQN outperforms all baselines on 7 out of 9 tasks in SuperMarioBros Games.

2/37

Outline

Background & Motivation

Background & Motivation 3/37

Reinforcement Learning

» An RL agent interacts with an MDP M = (S, A, P, R,~) to maximize cumulative reward.

Z vr(se, at)])

max E,
s

t=0
.-';'-. og0
action \

Background & Motivation

4/37

Exploration in RL

» A fundamental question in RL: the exploration-exploitation trade-off.
— Exploration: explore highly uncertain states and actions, which may sacrifice immediate
reward.
— Exploitation: take the best-known action, which may be sub-optimal due to partial

information.

Background & Motivation 5/37

Exploration in RL

» A fundamental question in RL: the exploration-exploitation trade-off.

— Exploration: explore highly uncertain states and actions, which may sacrifice immediate
reward.
— Exploitation: take the best-known action, which may be sub-optimal due to partial

information.

> We aim to design efficient exploration strategies in this work.

Background & Motivation 5/37

Existing Methods for Exploration

Three types of exploration methods:

> Dithering strategies:
epsilon-greedy [Mnih et al., 2015], Gaussian noise [Lillicrap et al., 2016].

Background & Motivation 6/37

Existing Methods for Exploration

Three types of exploration methods:

> Dithering strategies:
epsilon-greedy [Mnih et al., 2015], Gaussian noise [Lillicrap et al., 2016].

» Exploration bonus based exploration:
UCB and its variants [Stadie et al., 2015, Pathak et al., 2017, Tang et al., 2017, Burda et al., 2019,
Bai et al., 2021].

Background & Motivation 6/37

Existing Methods for Exploration

Three types of exploration methods:

> Dithering strategies:
epsilon-greedy [Mnih et al., 2015], Gaussian noise [Lillicrap et al., 2016].
» Exploration bonus based exploration:
UCB and its variants [Stadie et al., 2015, Pathak et al., 2017, Tang et al., 2017, Burda et al., 2019,
Bai et al., 2021].
» Randomized exploration:
RLSVI [Osband et al., 2016b] and BootDQN [Osband et al., 2016a].

Background & Motivation 6/37

Existing Methods for Exploration

Three types of exploration methods:

> Dithering strategies:
epsilon-greedy [Mnih et al., 2015], Gaussian noise [Lillicrap et al., 2016].

» Exploration bonus based exploration:
UCB and its variants [Stadie et al., 2015, Pathak et al., 2017, Tang et al., 2017, Burda et al., 2019,
Bai et al., 2021].

» Randomized exploration:
RLSVI [Osband et al., 2016b] and BootDQN [Osband et al., 2016a].

We will discuss randomized exploration, particularly RLSVI.

Background & Motivation 6/37

Review: RLSVI

Randomized Least-Square Value Iteration (RLSVI) [Osband et al., 2016b].

» (Step 1) Sample model parameters 6 from posterior distribution of 6*.

Background & Motivation 7/37

Review: RLSVI

Randomized Least-Square Value lteration (RLSVI) []

» (Step 1) Sample model parameters 6 from posterior distribution of 6*.

> (Step 2) For each stage t, take greedy action: a; = argmax, Q(s¢,a), where

Q(s¢,a) = (;S(st,a)—'—é.

Background & Motivation 7/37

Review: RLSVI

Randomized Least-Square Value lteration (RLSVI) []

» (Step 1) Sample model parameters 6 from posterior distribution of 6*.

> (Step 2) For each stage t, take greedy action: a; = argmax, Q(s¢,a), where

Q(s¢,a) = (;S(st,a)—'—é.

> (Step 3) (Key step) Update posterior distribution of 6*.

— When feature ¢ is fixed and known, posterior update is computational friendly.

Background & Motivation 7/37

Review: RLSVI

Randomized Least-Square Value lteration (RLSVI) []

» (Step 1) Sample model parameters 6 from posterior distribution of 6*.

> (Step 2) For each stage t, take greedy action: a; = argmax, Q(s¢,a), where

Q(s¢,a) = P(se, a)Té.
> (Step 3) (Key step) Update posterior distribution of 6*.

— When feature ¢ is fixed and known, posterior update is computational friendly.

However, we observe that Step 3 is intractable in Deep RL. We elaborate as follows.

Background & Motivation 7/37

Review: RLSVI

Step 3 of RLSVI: at episode K, we need to update the posterior covariance:

1 1\ X
Cov[0* | D] = <Uz<I>K + 021) ;P = b(skar)d(skar) | € RV (1)
w p k=1

Background & Motivation 8/37

Review: RLSVI

Step 3 of RLSVI: at episode K, we need to update the posterior covariance:

1 1\ X
Cov[0* | D] = <02<I>K + 021) ;P = b(skar)d(skar) | € RV (1)
w p k=1

When extending to Deep RL, we observe two issues:
» (Issue 1) RLSVI assumes a good feature ¢ is known and fixed in advance.

» (Issue 2) When ¢ is changing, Cov[#* | D] cannot be computed efficiently.

Background & Motivation 8/37

Challenges in Deep RL

(Issue 1) RLSVI assumes a good feature ¢ is known and fixed in advance.
» In Deep RL: Good features are unknown and need to be learned.

» Without good features, the performance of RLSVI (Bayesian DQN [Azizzadenesheli et al.,
2018]) is poor in Deep RL.

PongNoFrameskip-vd

-20.3

—— BayesianDQN
-20.4
=205
-20.6
-20.7
-20.8

-20.9

-21.0

0 5M 15M 20M

oM
Number of Interactions

Background & Motivation 9/37

Challenges in Deep RL

(Issue 2) when ¢ is changing, Cov[¢* | D] cannot be computed efficiently.

» Assume o, = 0, = 1 in Equation (1) and denote (sx,ax) by zk.

fixed ¢: O = P14+ d(xx)p(zx)" with &g =T,

K K—1
changing ¢x: Pp = Z¢K(W)¢K($Z)T7 Or_1:= Z dr—1(x0)pr_1(xe) -
(=1 (=1

Background & Motivation 10/37

Challenges in Deep RL

(Issue 2) when ¢ is changing, Cov[0* | D] cannot be computed efficiently.

» Assume o, = 0, = 1 in Equation (1) and denote (sg,ax) by zk.

fixed qﬁ: P = r_1+ Cﬁ(I‘K)C)(TK)T with oy = I,

K K-1
changing ¢x: ®x =Y _ () (), Pr1:= D dx1(ze)dr 1(ze) ",
=1 =1

Background & Motivation 11/37

Challenges in Deep RL

(Issue 2) when ¢ is changing, Cov[0* | D] cannot be computed efficiently.

» Assume o, = 0, = 1 in Equation (1) and denote (sg,ax) by zk.

fixed qﬁ: P = r_1+ @(JIJK)@(I[()T with oy = I,

K K-1
changing ¢ Px =Y bxc(wr)drc (), Pr1i= Y dx1(ze)dr-1(ze) T,
=1 =1

Background & Motivation 12 /37

Challenges in Deep RL

(Issue 2) when ¢ is changing, Cov[6* | D] cannot be computed efficiently.

» Assume 0, = 0, = 1 in Equation (1) and denote (sx,ax) by k.

fixed ¢: Py = Pp_1 + O(ax)d(zr) with &g =TI,
K-1

K
changing ¢x: P = Z@Iﬁ'("w)m{(ﬂ?e)T7 Or_q = Z br—1(x)pre—_1(xe) ",
—1

=1
» In the changing ¢ case, @i has to be recomputed using all historical data.

— e.g. in Atari, this calculation could involve more than 1M samples with dimension 512.

» Furthermore, we need to inverse ® in Equation (1).

Background & Motivation

13/37

Challenges in Deep RL

To tackle (Issue 1) & (lIssue 2) in updating the posterior distribution of 6*.

» BootDQN [Osband et al., 2016a] uses ensembles to approximate the posterior.

— But the number of ensembles is often limited — poor approximation.

Background & Motivation 14 /37

Challenges in Deep RL

To tackle (Issue 1) & (lIssue 2) in updating the posterior distribution of 6*.

> BootDQN | | uses ensembles to approximate the posterior.

— But the number of ensembles is often limited — poor approximation.

» In this work, we introduce HyperDQN, which addresses the above issues in Deep RL.

Background & Motivation 14 /37

Outline

HyperDQN

HyperDQN 15 /37

Outline

HyperDQN
Overview

HyperDQN 16 /37

Overview of HyperDQN

Two models are implemented in HyperDQN.
» Base model: DQN-type structure

Q9 (87 a) = <¢9hidden (8)’ aprediCt(a»'
value function

state Hidden Predict jmm 2 Qe S a)
Layers Layer

¢9h1dden predlct

Figure 1: lllustration for the proposed method HyperDQN: Base model.

HyperDQN

17 /37

Overview of HyperDQN

Two models are implemented in HyperDQN.
» Base model: DQN-type structure Qg (s, a) = (P6,4en (), Opredict(a)).
» Hypermodel [Dwaracherla et al., 2020]: @predict = fu(2) where z ~ p(z).

» Resulting model: Qg,1. (=) (5, a).

A random vector /\
z — — 0 redict += Juv (%
f,, predict : f () p(epredlct)

p(2)

value function

state Hidden Y —— (Qp(s,a)
Layers Layer

¢9hldden predlct

Figure 2: lllustration for the proposed method HyperDQN.
18 /37

HyperDQN

Outline

HyperDQN

Training Objective

HyperDQN 19 /37

Training Objective

Training objective in HyperDQN:
. 2
1T /p(Z) l: Z (Qtarget(sla z) + UMZTE - Qprediction(sa a, Z))

V,Ohidden /
(s,a,r&,8")ED (2)
o’ . 2
+ =5 [[10(2) = fru ()| | (d2),
Up
where
Qprediction(sa a, Z) = Qﬁhiddemf,,(z) (Sa CL),

;o (3)
-

!/ (/
Qtarget(s ’ Z) =r+v max |:(2(}>mum- fz(2) (s7,a’)
P })

» Noise term o,z ' ¢ is used for posterior approximation and will be explained later.

» Joint Feature Learning and Uncertainty quantification through Equation (2).

HyperDQN 20/37

Diverse Action Sequences Induced by HyperDQN

p(epredict)

» time horizon

From the (approximate) posterior distribution, all plausible action sequences can be

sampled for exploration using z ~ p(2), Opredict = [1(2) and argmax, Qoyigen.Opredice (5> @)-

HyperDQN 21/37

HyperDQN Algorithm

» Compared with DQN, our method incorporates the hypermodel for randomized exploration.

— Can be regarded as an extension of hypermodel from bandit to RL tasks.

HyperDQN 22/37

HyperDQN Algorithm

» Compared with DQN, our method incorporates the hypermodel for randomized exploration.
— Can be regarded as an extension of hypermodel from bandit to RL tasks.
» Importantly, there is NO epsilon-greedy in HyperDQN.

— Surprisingly, many existing advanced exploration methods [Osband et al., 2016a, Rashid et al.,
2020, Bai et al., 2021] rely on epsilon-greedy.

— Without epsilon-greedy, the performance of these methods could degenerate.

HyperDQN 22/37

HyperDQN Algorithm

» Compared with DQN, our method incorporates the hypermodel for randomized exploration.
— Can be regarded as an extension of hypermodel from bandit to RL tasks.

» Importantly, there is NO epsilon-greedy in HyperDQN.
— Surprisingly, many existing advanced exploration methods [Osband et al., 2016a, Rashid et al.,

2020, Bai et al., 2021] rely on epsilon-greedy.
— Without epsilon-greedy, the performance of these methods could degenerate.

» We find that using epsilon-greedy for HyperDQN ruins deep-insight behaviors and leads to a

worse performance (Figure 4).

HyperDQN 22 /37

Outline

HyperDQN

Experiment Results

HyperDQN 23 /37

Atari

» OB2I [Bai et al., 2021]: a SOTA exploration bonus based method.

HyperDQN

Human-normalized score
o
i
&

Median score over 56 Atari environments

—— DoubleDQN
—*— BootDQN
—=— HyperDQN

0B2!

0 5M 10M 15mM 20M

Number of Frames

Figure 3: Human-normalized score over 56 environments in Atari 2600 suite.

HyperDQN has 2x improvement over baselines.

24 /37

SuperMarioBros

Table 1: The mean evaluation scores (after 20M frames) for SuperMarioBros games.

DoubleDQN BootDQN OB2l HyperDQN
SuperMarioBros-1-1-v1 8,698 7,008 4,457 7,924
SuperMarioBros-1-2-v1 5,903 5,665 4,695 8,266
SuperMarioBros-1-3-v1 1,989 1,609 1,583 6,046
SuperMarioBros-2-1-v1 31,247 26,415 14,225 23,046
SuperMarioBros-2-2-v1 1,622 1,092 1,587 1,983
SuperMarioBros-2-3-v1 5,515 5,107 4,401 5,980
SuperMarioBros-3-1-v1 4,463 3,861 3,251 48,384
SuperMarioBros-3-2-v1 20,511 20,954 26,508 41,139
SuperMarioBros-3-3-v1 3,416 2,650 3,009 5,568

HyperDQN outperforms over baselines in 7/9 games.‘

HyperDQN 25/37

SuperMarioBros-1-1-v1

SuperMarioBros

SuperMarioBros-1-2-vl

SuperMarioBros-1-3-v1

—— HyperDON —— HyperDQN 2000| — HyperDan
12000 —— HyperDQN(with e-greedy) —<— HyperDQN(with e-greedy) —— HyperDON(with ¢-greedy)
8000 6000
10000
] 5000
g 8000 6000
o 4000
]
6000
2 4000 3000
&
4000 2000
2000
2000 1000
o o o
3 5M 1M 20 3 EY 1M 20 3 M 15M 20

10M
Number of Frames

10M
Number of Frames

10M
Number of Frames

Figure 4: Ablation study about epsilon-greedy in HyperDQN.

Using epsilon-greedy ruins randomized exploration behaviors of HyperDQN.

HyperDQN

26 /37

SuperMarioBros

SuperMarioBros-1-3-v1

8000
—— HyperDQN
7000 —— HyperDQN(with an informative prior)

6000

5000

4000

3000

Episode Score

2000

1000

0 5M 10M 15M 20M
Number of Frames

Figure 5: Ablation study about informative prior in HyperDQN.

Using an informative prior model in Objective function (2) could accelerate exploration.

HyperDQN

27 /37

Computation Efficiency

» Computation complexity comparison with BootDQN on Deep-Sea []
» The metric is (a smaller number indicates a better performance):
computation complexity = ngqg X 1, X K.
— Nsgd is the number of SGD steps per iteration

— n. is the number of ensemble (index) samples,
— K is the number of episode that the episode return is 0.99.

‘ deep-sea-10 deep-sea-15 deep-sea-20 deep-sea-25 deep-sea-30
BootDQN 130K 250K 490K 870K 1,640K
HyperDQN 48K 104K 196K 304K 1,120K

HyperDQN 28 /37

Outline

Why HyperDQN performs well?

Why HyperDQN performs well? 29 /37

Posterior Approximation Ability of Hypermodel

» [Dwaracherla et al., 2020] show that a linear hypermodel has sufficient representation power.

» However, [Dwaracherla et al., 2020] do not demonstrate why hypermodel can learn the

posterior distribution.

Why HyperDQN performs well? 30 /37

Posterior Approximation Ability of Hypermodel

> | | show that a linear hypermodel has sufficient representation power.

> However, |] do not demonstrate why hypermodel can learn the

posterior distribution.

Theorem 1 [Our Work] [Informal]

When both base & hypermodel are linear, hypermodel can generate approximate
of 6*.

Why HyperDQN performs well? 30 /37

Posterior Approximation Ability of Hypermodel

14 . . posterior sample
+ hypermodel(zT&)
hypermodel(w)

0; 08

Figure 6: Visualization of true posterior samples and learned posterior samples.

Hypermodel can approximate the posterior distribution with the z-dependent noise = ' ¢.

Why HyperDQN performs well? 31/37

Outline

Conclusion

Conclusion 32/37

Conclusion

Summary
» Practical randomized exploration method with strong empirical performance.

» Provide understanding of why the hypermodel works.

Conclusion 33/37

Conclusion

Summary
» Practical randomized exploration method with strong empirical performance.
» Provide understanding of why the hypermodel works.

Future Work
» Extension to continuous control tasks.

» Informative prior to accelerate exploration.

Conclusion 33/37

References |

K. Azizzadenesheli, E. Brunskill, and A. Anandkumar. Efficient exploration through bayesian
deep g-networks. In Information Theory and Applications Workshop, pages 1-9, 2018.

C. Bai, L. Wang, L. Han, J. Hao, A. Garg, P. Liu, and Z. Wang. Principled exploration via
optimistic bootstrapping and backward induction. In Proceedings of the 38th International

Conference on Machine Learning, pages 577-587, 2021.

Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov. Exploration by random network distillation.
In Proceedings of the 7th International Conference on Learning Representations, 2019.

V. Dwaracherla, X. Lu, M. Ibrahimi, I. Osband, Z. Wen, and B. Van Roy. Hypermodels for
exploration. In Proceedings of the 8th International Conference on Learning Representations,
2020.

Conclusion 34 /37

References I

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In Proceedings of the 4th International

Conference on Learning Representations, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, 2015.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped DQN. In
Advances in Neural Information Processing Systems 29, pages 4026—4034, 2016a.

I. Osband, B. V. Roy, and Z. Wen. Generalization and exploration via randomized value
functions. In Proceedings of the 33rd International Conference on Machine Learning, pages
2377-2386, 2016b.

Conclusion 35/37

References lll

I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore,
C. Szepesvari, S. Singh, B. V. Roy, R. S. Sutton, D. Silver, and H. van Hasselt. Behaviour

suite for reinforcement learning. In Proceedings of the 8th International Conference on
Learning Representations, 2020.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by

self-supervised prediction. In Proceedings of the 34th International Conference on Machine
Learning, pages 2778-2787, 2017.

T. Rashid, B. Peng, W. Boehmer, and S. Whiteson. Optimistic exploration even with a

pessimistic initialisation. In Proceedings of the 8th International Conference on Learning
Representations, 2020.

B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv, 1507.00814, 2015.

Conclusion

36/37

References IV

H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and
P. Abbeel. #exploration: A study of count-based exploration for deep reinforcement learning.
In Advances in Neural Information Processing Systems 30, pages 2753-2762, 2017.

Conclusion 37/37

	Background & Motivation
	HyperDQN
	Overview
	Training Objective
	Experiment Results

	Why HyperDQN performs well?
	Conclusion
	References

