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Contributions

» We present a practical randomized exploration method HyperDQN.

» Our experiments support that HyperDQN achieves significant improvements.

— HyperDQN achieves about 2x improvement than baselines over 56 tasks in Atari suite.
— HyperDQN outperforms all baselines on 7 out of 9 tasks in SuperMarioBros Games.
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Reinforcement Learning

» An RL agent interacts with an MDP M = (S, A, P, R,~) to maximize cumulative reward.
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Exploration in RL

» A fundamental question in RL: the exploration-exploitation trade-off.
— Exploration: explore highly uncertain states and actions, which may sacrifice immediate
reward.
— Exploitation: take the best-known action, which may be sub-optimal due to partial

information.
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Exploration in RL

» A fundamental question in RL: the exploration-exploitation trade-off.

— Exploration: explore highly uncertain states and actions, which may sacrifice immediate
reward.
— Exploitation: take the best-known action, which may be sub-optimal due to partial

information.

> We aim to design efficient exploration strategies in this work.
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Existing Methods for Exploration

Three types of exploration methods:

> Dithering strategies:
epsilon-greedy [Mnih et al., 2015], Gaussian noise [Lillicrap et al., 2016].
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Existing Methods for Exploration

Three types of exploration methods:

> Dithering strategies:
epsilon-greedy [Mnih et al., 2015], Gaussian noise [Lillicrap et al., 2016].

» Exploration bonus based exploration:
UCB and its variants [Stadie et al., 2015, Pathak et al., 2017, Tang et al., 2017, Burda et al., 2019,
Bai et al., 2021].

» Randomized exploration:
RLSVI [Osband et al., 2016b] and BootDQN [Osband et al., 2016a].

We will discuss randomized exploration, particularly RLSVI.
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Review: RLSVI

Randomized Least-Square Value Iteration (RLSVI) [Osband et al., 2016b].

» (Step 1) Sample model parameters 6 from posterior distribution of 6*.
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Review: RLSVI

Randomized Least-Square Value lteration (RLSVI) [ ]

» (Step 1) Sample model parameters 6 from posterior distribution of 6*.

> (Step 2) For each stage t, take greedy action: a; = argmax, Q(s¢,a), where

Q(s¢,a) = P(se, a)Té.
> (Step 3) (Key step) Update posterior distribution of 6*.

— When feature ¢ is fixed and known, posterior update is computational friendly.

However, we observe that Step 3 is intractable in Deep RL. We elaborate as follows.
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Review: RLSVI

Step 3 of RLSVI: at episode K, we need to update the posterior covariance:

1 1\ X
Cov[0* | D] = <Uz<I>K + 021) ;P = b(skar)d(skar) | € RV (1)
w p k=1
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Review: RLSVI

Step 3 of RLSVI: at episode K, we need to update the posterior covariance:

1 1\ X
Cov[0* | D] = <02<I>K + 021) ;P = b(skar)d(skar) | € RV (1)
w p k=1

When extending to Deep RL, we observe two issues:
» (Issue 1) RLSVI assumes a good feature ¢ is known and fixed in advance.

» (Issue 2) When ¢ is changing, Cov[#* | D] cannot be computed efficiently.
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Challenges in Deep RL

(Issue 1) RLSVI assumes a good feature ¢ is known and fixed in advance.
» In Deep RL: Good features are unknown and need to be learned.

» Without good features, the performance of RLSVI (Bayesian DQN [Azizzadenesheli et al.,
2018]) is poor in Deep RL.
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Challenges in Deep RL

(Issue 2) when ¢ is changing, Cov[¢* | D] cannot be computed efficiently.

» Assume o, = 0, = 1 in Equation (1) and denote (sx,ax) by zk.

fixed ¢: O = P14+ d(xx)p(zx)"  with &g =T,

K K—1
changing ¢x: Pp = Z¢K(W)¢K($Z)T7 Or_1:= Z dr—1(x0)pr_1(xe) -
(=1 (=1
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Challenges in Deep RL

(Issue 2) when ¢ is changing, Cov[6* | D] cannot be computed efficiently.

» Assume 0, = 0, = 1 in Equation (1) and denote (sx,ax) by k.

fixed ¢: Py = Pp_1 + O(ax)d(zr)  with &g =TI,
K-1

K
changing ¢x: P = Z@Iﬁ'("w)m{(ﬂ?e)T7 Or_q = Z br—1(x)pre—_1(xe) ",
—1

=1
» In the changing ¢ case, @i has to be recomputed using all historical data.

— e.g. in Atari, this calculation could involve more than 1M samples with dimension 512.

» Furthermore, we need to inverse ® in Equation (1).

Background & Motivation
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Challenges in Deep RL

To tackle (Issue 1) & (lIssue 2) in updating the posterior distribution of 6*.

» BootDQN [Osband et al., 2016a] uses ensembles to approximate the posterior.

— But the number of ensembles is often limited — poor approximation.
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Challenges in Deep RL

To tackle (Issue 1) & (lIssue 2) in updating the posterior distribution of 6*.

> BootDQN | | uses ensembles to approximate the posterior.

— But the number of ensembles is often limited — poor approximation.

» In this work, we introduce HyperDQN, which addresses the above issues in Deep RL.
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Overview of HyperDQN

Two models are implemented in HyperDQN.
» Base model: DQN-type structure

Q9 (87 a) = <¢9hidden (8)’ aprediCt(a»'
value function

state Hidden Predict jmm 2 Qe S a)
Layers Layer

¢9h1dden predlct

Figure 1: lllustration for the proposed method HyperDQN: Base model.
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Overview of HyperDQN

Two models are implemented in HyperDQN.
» Base model: DQN-type structure Qg (s, a) = (P6,4en (), Opredict(a)).
» Hypermodel [Dwaracherla et al., 2020]: @predict = fu(2) where z ~ p(z).

» Resulting model: Qg, .....1. (=) (5, a).

A random vector /\
z — — 0 redict += Juv (%
f,, predict : f ( ) p(epredlct)

p(2)

value function

state Hidden Y —— (Qp(s,a)
Layers Layer

¢9hldden predlct

Figure 2: lllustration for the proposed method HyperDQN.
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Training Objective

Training objective in HyperDQN:
. 2
1T /p(Z) l: Z (Qtarget(sla z) + UMZTE - Qprediction(sa a, Z))

V,Ohidden /
(s,a,r&,8")ED (2)
o’ . 2
+ =5 [[10(2) = fru ()| | (d2),
Up
where
Qprediction(sa a, Z) = Qﬁhiddemf,,(z) (Sa CL),

;o (3)
-

!/ ( /
Qtarget(s ’ Z) =r+v max |:(2(}>mum- fz(2) (s7,a’)
P } )

» Noise term o,z ' ¢ is used for posterior approximation and will be explained later.

» Joint Feature Learning and Uncertainty quantification through Equation (2).
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Diverse Action Sequences Induced by HyperDQN

p(epredict)

» time horizon

From the (approximate) posterior distribution, all plausible action sequences can be

sampled for exploration using z ~ p(2), Opredict = [1(2) and argmax, Qoyigen.Opredice (5> @)-
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HyperDQN Algorithm

» Compared with DQN, our method incorporates the hypermodel for randomized exploration.

— Can be regarded as an extension of hypermodel from bandit to RL tasks.

HyperDQN 22/37



HyperDQN Algorithm

» Compared with DQN, our method incorporates the hypermodel for randomized exploration.
— Can be regarded as an extension of hypermodel from bandit to RL tasks.
» Importantly, there is NO epsilon-greedy in HyperDQN.

— Surprisingly, many existing advanced exploration methods [Osband et al., 2016a, Rashid et al.,
2020, Bai et al., 2021] rely on epsilon-greedy.

— Without epsilon-greedy, the performance of these methods could degenerate.
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HyperDQN Algorithm

» Compared with DQN, our method incorporates the hypermodel for randomized exploration.
— Can be regarded as an extension of hypermodel from bandit to RL tasks.

» Importantly, there is NO epsilon-greedy in HyperDQN.
— Surprisingly, many existing advanced exploration methods [Osband et al., 2016a, Rashid et al.,

2020, Bai et al., 2021] rely on epsilon-greedy.
— Without epsilon-greedy, the performance of these methods could degenerate.

» We find that using epsilon-greedy for HyperDQN ruins deep-insight behaviors and leads to a

worse performance (Figure 4).
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HyperDQN
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Atari

» OB2I [Bai et al., 2021]: a SOTA exploration bonus based method.

HyperDQN

Human-normalized score
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Figure 3: Human-normalized score over 56 environments in Atari 2600 suite.

HyperDQN has 2x improvement over baselines.
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SuperMarioBros

Table 1: The mean evaluation scores (after 20M frames) for SuperMarioBros games.

DoubleDQN  BootDQN OB2l HyperDQN
SuperMarioBros-1-1-v1 8,698 7,008 4,457 7,924
SuperMarioBros-1-2-v1 5,903 5,665 4,695 8,266
SuperMarioBros-1-3-v1 1,989 1,609 1,583 6,046
SuperMarioBros-2-1-v1 31,247 26,415 14,225 23,046
SuperMarioBros-2-2-v1 1,622 1,092 1,587 1,983
SuperMarioBros-2-3-v1 5,515 5,107 4,401 5,980
SuperMarioBros-3-1-v1 4,463 3,861 3,251 48,384
SuperMarioBros-3-2-v1 20,511 20,954 26,508 41,139
SuperMarioBros-3-3-v1 3,416 2,650 3,009 5,568

HyperDQN outperforms over baselines in 7/9 games.‘
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SuperMarioBros-1-1-v1
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Figure 4: Ablation study about epsilon-greedy in HyperDQN.

Using epsilon-greedy ruins randomized exploration behaviors of HyperDQN.

HyperDQN
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SuperMarioBros
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Figure 5: Ablation study about informative prior in HyperDQN.

Using an informative prior model in Objective function (2) could accelerate exploration.

HyperDQN
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Computation Efficiency

» Computation complexity comparison with BootDQN on Deep-Sea [ ]
» The metric is (a smaller number indicates a better performance):
computation complexity = ngqg X 1, X K.
— Nsgd is the number of SGD steps per iteration

— n. is the number of ensemble (index) samples,
— K is the number of episode that the episode return is 0.99.

‘ deep-sea-10 deep-sea-15 deep-sea-20 deep-sea-25  deep-sea-30
BootDQN 130K 250K 490K 870K 1,640K
HyperDQN 48K 104K 196K 304K 1,120K
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Why HyperDQN performs well?
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Posterior Approximation Ability of Hypermodel

» [Dwaracherla et al., 2020] show that a linear hypermodel has sufficient representation power.

» However, [Dwaracherla et al., 2020] do not demonstrate why hypermodel can learn the

posterior distribution.
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Posterior Approximation Ability of Hypermodel

> | | show that a linear hypermodel has sufficient representation power.

> However, | ] do not demonstrate why hypermodel can learn the

posterior distribution.

Theorem 1 [Our Work] [Informal]

When both base & hypermodel are linear, hypermodel can generate approximate
of 6*.
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Posterior Approximation Ability of Hypermodel

14 . . posterior sample
+ hypermodel(zT&)
hypermodel(w)

0; 08

Figure 6: Visualization of true posterior samples and learned posterior samples.

Hypermodel can approximate the posterior distribution with the z-dependent noise = ' ¢.
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Conclusion

Summary
» Practical randomized exploration method with strong empirical performance.

» Provide understanding of why the hypermodel works.
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Conclusion

Summary
» Practical randomized exploration method with strong empirical performance.
» Provide understanding of why the hypermodel works.

Future Work
» Extension to continuous control tasks.

» Informative prior to accelerate exploration.
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