HyperDQN: A Randomized Exploration for **Deep Reinforcement Learning**

Yingru Li yingruli@link.cuhk.edu.cn

NeurIPS 2021 Workshop on Ecological Theory of RL (Oral)

Ziniu Li1

Yingru Li1,†

Yushun Zhang¹

Tong Zhang²

Zhi-Quan Luo¹

[1] The Chinese University of Hong Kong, Shenzhen [2] Hong Kong University of Science and Technology

[†] Corresponding author

Contributions

▶ We present a practical randomized exploration method *HyperDQN*.

- Our experiments support that HyperDQN achieves significant improvements.
 - HyperDQN achieves about 2x improvement than baselines over 56 tasks in Atari suite.
 - HyperDQN outperforms all baselines on 7 out of 9 tasks in SuperMarioBros Games

Contributions

▶ We present a practical randomized exploration method *HyperDQN*.

- Our experiments support that HyperDQN achieves significant improvements.
 - HyperDQN achieves about 2x improvement than baselines over 56 tasks in Atari suite.
 - HyperDQN outperforms all baselines on 7 out of 9 tasks in SuperMarioBros Games

Contributions

▶ We present a practical randomized exploration method *HyperDQN*.

- Our experiments support that HyperDQN achieves significant improvements.
 - HyperDQN achieves about 2x improvement than baselines over 56 tasks in Atari suite.
 - $-\ \mbox{HyperDQN}$ outperforms all baselines on 7 out of 9 tasks in SuperMarioBros Games.

Outline

Background & Motivation

HyperDQN

Overview

Training Objective

Experiment Results

Why HyperDQN performs well

Conclusion

Reinforcement Learning

▶ An RL agent interacts with an MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, R, \gamma)$ to maximize cumulative reward.

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right].$$

Exploration in RL

- ► A fundamental question in RL: the exploration-exploitation trade-off.
 - Exploration: explore highly uncertain states and actions, which may sacrifice immediate reward.
 - Exploitation: take the best-known action, which may be sub-optimal due to partial information.
- ▶ We aim to design efficient exploration strategies in this work.

Exploration in RL

- ► A fundamental question in RL: the exploration-exploitation trade-off.
 - Exploration: explore highly uncertain states and actions, which may sacrifice immediate reward.
 - Exploitation: take the best-known action, which may be sub-optimal due to partial information.
- ▶ We aim to design efficient exploration strategies in this work.

Three types of exploration methods:

► Dithering strategies: epsilon-greedy [Mnih et al., 2015], Gaussian noise [Lillicrap et al., 2016].

Exploration bonus based exploration:
 UCB and its variants [Stadie et al., 2015, Pathak et al., 2017, Tang et al., 2017, Burda et al., 2019
 Bai et al., 2021].

Randomized exploration: RLSVI [Osband et al., 2016b] and BootDQN [Osband et al., 2016a]

We will discuss randomized exploration, particularly RLSVI.

Three types of exploration methods:

▶ Dithering strategies: epsilon-greedy [Mnih et al., 2015], Gaussian noise [Lillicrap et al., 2016].

► Exploration bonus based exploration:

UCB and its variants [Stadie et al., 2015, Pathak et al., 2017, Tang et al., 2017, Burda et al., 2019, Bai et al., 2021].

Randomized exploration:

RLSVI [Osband et al., 2016b] and BootDQN [Osband et al., 2016a]

We will discuss randomized exploration, particularly RLSVI.

Three types of exploration methods:

▶ Dithering strategies: epsilon-greedy [Mnih et al., 2015], Gaussian noise [Lillicrap et al., 2016].

► Exploration bonus based exploration:

```
UCB and its variants [Stadie et al., 2015, Pathak et al., 2017, Tang et al., 2017, Burda et al., 2019, Bai et al., 2021].
```

Randomized exploration:

RLSVI [Osband et al., 2016b] and BootDQN [Osband et al., 2016a].

We will discuss randomized exploration, particularly RLSVI

Three types of exploration methods:

▶ Dithering strategies: epsilon-greedy [Mnih et al., 2015], Gaussian noise [Lillicrap et al., 2016].

► Exploration bonus based exploration:

```
UCB and its variants [Stadie et al., 2015, Pathak et al., 2017, Tang et al., 2017, Burda et al., 2019, Bai et al., 2021].
```

Randomized exploration:

RLSVI [Osband et al., 2016b] and BootDQN [Osband et al., 2016a].

We will discuss randomized exploration, particularly RLSVI.

Randomized Least-Square Value Iteration (RLSVI) [Osband et al., 2016b].

- ▶ (Step 1) Sample model parameters $\tilde{\theta}$ from **posterior distribution of** θ^* .
- ► (Step 2) For each stage t, take greedy action: $a_t = \operatorname{argmax}_a Q(s_t, a)$, where $Q(s_t, a) := \phi(s_t, a)^{\top} \tilde{\theta}$.
- ▶ (Step 3) (Key step) Update posterior distribution of θ^* .
 - When feature ϕ is fixed and known, posterior update is computational friendly

Randomized Least-Square Value Iteration (RLSVI) [Osband et al., 2016b].

- ▶ (Step 1) Sample model parameters $\tilde{\theta}$ from **posterior distribution of** θ^* .
- ► (Step 2) For each stage t, take greedy action: $a_t = \operatorname{argmax}_a Q(s_t, a)$, where $Q(s_t, a) := \phi(s_t, a)^{\top} \tilde{\theta}$.
- ▶ (Step 3) (Key step) Update posterior distribution of θ^* .
 - When feature ϕ is fixed and known, posterior update is computational friendly

Randomized Least-Square Value Iteration (RLSVI) [Osband et al., 2016b].

- ▶ (Step 1) Sample model parameters $\tilde{\theta}$ from **posterior distribution of** θ^* .
- ▶ (Step 2) For each stage t, take greedy action: $a_t = \operatorname{argmax}_a Q(s_t, a)$, where $Q(s_t, a) := \phi(s_t, a)^{\top} \tilde{\theta}$.
- ▶ (Step 3) (Key step) Update posterior distribution of θ^* .
 - When feature ϕ is fixed and known, posterior update is computational friendly.

Randomized Least-Square Value Iteration (RLSVI) [Osband et al., 2016b].

- ▶ (Step 1) Sample model parameters $\tilde{\theta}$ from **posterior distribution of** θ^* .
- ► (Step 2) For each stage t, take greedy action: $a_t = \operatorname{argmax}_a Q(s_t, a)$, where $Q(s_t, a) := \phi(s_t, a)^{\top} \tilde{\theta}$.
- ► (Step 3) (Key step) Update posterior distribution of θ^* .
 - When feature ϕ is fixed and known, posterior update is computational friendly.

Step 3 of RLSVI: at episode K, we need to update the **posterior covariance**:

$$\operatorname{Cov}[\theta^* \mid \mathcal{D}] = \left(\frac{1}{\sigma_\omega^2} \Phi_K + \frac{1}{\sigma_p^2} I\right)^{-1}, \quad \Phi_K = \sum_{k=1}^K \phi(s_k, a_k) \phi(s_k, a_k)^\top \in \mathbb{R}^{d \times d}.$$
 (1)

When extending to Deep RL, we observe two issues

- \blacktriangleright (Issue 1) RLSVI assumes a good feature ϕ is known and fixed in advance.
- ▶ (Issue 2) When ϕ is changing, $Cov[\theta^* \mid \mathcal{D}]$ cannot be computed efficiently.

Step 3 of RLSVI: at episode K, we need to update the **posterior covariance**:

$$\operatorname{Cov}[\theta^* \mid \mathcal{D}] = \left(\frac{1}{\sigma_\omega^2} \Phi_K + \frac{1}{\sigma_p^2} I\right)^{-1}, \quad \Phi_K = \sum_{k=1}^K \phi(s_k, a_k) \phi(s_k, a_k)^\top \in \mathbb{R}^{d \times d}. \tag{1}$$

When extending to Deep RL, we observe two issues:

- (Issue 1) RLSVI assumes a good feature ϕ is known and fixed in advance.
- ▶ (Issue 2) When ϕ is changing, $Cov[\theta^* \mid \mathcal{D}]$ cannot be computed efficiently.

(Issue 1) RLSVI assumes a good feature ϕ is known and fixed in advance.

- ▶ In Deep RL: Good features are unknown and need to be learned.
- ► Without good features, the performance of RLSVI (Bayesian DQN [Azizzadenesheli et al., 2018]) is poor in Deep RL.

(Issue 2) when ϕ is changing, $\operatorname{Cov}[\theta^* \mid \mathcal{D}]$ cannot be computed efficiently.

fixed
$$\phi$$
: $\Phi_K = \Phi_{K-1} + \phi(x_K)\phi(x_K)^{\top}$ with $\Phi_0 = \mathbf{I}$,

$$\text{changing } \phi_K \colon \quad \Phi_K := \sum_{\ell=1}^K \phi_K(x_\ell) \phi_K(x_\ell)^\top, \ \Phi_{K-1} := \sum_{\ell=1}^{K-1} \phi_{K-1}(x_\ell) \phi_{K-1}(x_\ell)^\top, \cdots$$

(Issue 2) when ϕ is changing, $\operatorname{Cov}[\theta^* \mid \mathcal{D}]$ cannot be computed efficiently.

fixed
$$\phi$$
: $\Phi_K = \Phi_{K-1} + \phi(x_K)\phi(x_K)^\top$ with $\Phi_0 = I$, changing ϕ_K : $\Phi_K := \sum_{\ell=1}^K \phi_K(x_\ell)\phi_K(x_\ell)^\top$, $\Phi_{K-1} := \sum_{\ell=1}^{K-1} \phi_{K-1}(x_\ell)\phi_{K-1}(x_\ell)^\top$, \cdots

(Issue 2) when ϕ is changing, $\operatorname{Cov}[\theta^* \mid \mathcal{D}]$ cannot be computed efficiently.

fixed
$$\phi$$
: $\Phi_K = \Phi_{K-1} + \phi(x_K)\phi(x_K)^{\top}$ with $\Phi_0 = I$, changing ϕ_K : $\Phi_K := \sum_{\ell=1}^K \phi_K(x_\ell)\phi_K(x_\ell)^{\top}$, $\Phi_{K-1} := \sum_{\ell=1}^{K-1} \phi_{K-1}(x_\ell)\phi_{K-1}(x_\ell)^{\top}$, \cdots

(Issue 2) when ϕ is changing, $Cov[\theta^* \mid \mathcal{D}]$ cannot be computed efficiently.

fixed
$$\phi$$
: $\Phi_K = \Phi_{K-1} + \phi(x_K)\phi(x_K)^{\top}$ with $\Phi_0 = I$, changing ϕ_K : $\Phi_K := \sum_{\ell=1}^K \phi_K(x_\ell)\phi_K(x_\ell)^{\top}$, $\Phi_{K-1} := \sum_{\ell=1}^{K-1} \phi_{K-1}(x_\ell)\phi_{K-1}(x_\ell)^{\top}$, \cdots

- ▶ In the changing ϕ_K case, Φ_K has to be recomputed using all historical data.
 - e.g. in Atari, this calculation could involve more than 1M samples with dimension 512.
- ▶ Furthermore, we need to inverse Φ_k in Equation (1).

To tackle (Issue 1) & (Issue 2) in updating the posterior distribution of θ^* .

- ▶ BootDQN [Osband et al., 2016a] uses **ensembles** to approximate the posterior.
 - But the number of ensembles is often limited \rightarrow poor approximation.

▶ In this work, we introduce *HyperDQN*, which addresses the above issues in Deep RL.

To tackle (Issue 1) & (Issue 2) in updating the posterior distribution of θ^* .

- ▶ BootDQN [Osband et al., 2016a] uses **ensembles** to approximate the posterior.
 - But the number of ensembles is often limited \rightarrow poor approximation.

▶ In this work, we introduce HyperDQN, which addresses the above issues in Deep RL.

Outline

Background & Motivation

HyperDQN

Overview

Training Objective

Experiment Results

Why HyperDQN performs well

Conclusion

HyperDQN

Outline

Background & Motivation

HyperDQN

Overview

Training Objective

Experiment Results

Why HyperDQN performs well

Conclusion

Overview of HyperDQN

Two models are implemented in HyperDQN.

► Base model: DQN-type structure

$$Q_{\theta}(s, a) = \langle \phi_{\theta_{\mathsf{hidden}}}(s), \theta_{\mathsf{predict}}(a) \rangle.$$

Figure 1: Illustration for the proposed method HyperDQN: Base model.

Overview of HyperDQN

Two models are implemented in HyperDQN.

- ▶ Base model: DQN-type structure $Q_{\theta}(s, a) = \langle \phi_{\theta_{\mathsf{hidden}}}(s), \theta_{\mathsf{predict}}(a) \rangle$.
- ▶ Hypermodel [Dwaracherla et al., 2020]: $\theta_{predict} = f_{\nu}(z)$ where $z \sim p(z)$.
- ▶ Resulting model: $Q_{\theta_{\text{hidden}}, f_{\nu}(z)}(s, a)$.

Figure 2: Illustration for the proposed method HyperDQN.

Outline

Background & Motivation

HyperDQN

Overview

Training Objective

Experiment Results

Why HyperDQN performs well

Conclusion

Training Objective

Training objective in HyperDQN:

$$\min_{\nu,\theta_{\mathsf{hidden}}} \int_{z} p(z) \left[\sum_{(s,a,r,\xi,s') \in \mathcal{D}} \left(Q_{\mathsf{target}}(s',z) + \sigma_{\omega} z^{\mathsf{T}} \xi - Q_{\mathsf{prediction}}(s,a,z) \right)^{2} + \frac{\sigma_{\omega}^{2}}{\sigma_{p}^{2}} \left\| f_{\nu}(z) - f_{\nu_{\mathsf{prior}}}(z) \right\|^{2} \right] (\mathsf{d}z), \tag{2}$$

where

$$Q_{\text{prediction}}(s, a, z) = Q_{\theta_{\text{hidden}}, f_{\nu}(z)}(s, a),$$

$$Q_{\text{target}}(s', z) = r + \gamma \max_{a'} \left[\frac{Q_{\bar{\theta}_{\text{hidden}}, f_{\bar{\nu}}(z)}(s', a')}{2} \right].$$
(3)

- Noise term $\sigma_{\omega} z^{\mathsf{T}} \xi$ is used for posterior approximation and will be explained later.
- ▶ Joint Feature Learning and Uncertainty quantification through Equation (2).

Diverse Action Sequences Induced by HyperDQN

From the (approximate) posterior distribution, all plausible action sequences can be sampled for exploration using $z \sim p(z)$, $\theta_{\text{predict}} = f_{\nu}(z)$ and $\underset{argmax_{a}}{\operatorname{argmax}_{a}} Q_{\theta_{\text{bidden}},\theta_{\text{predict}}}(s,a)$.

HyperDQN 21/37

HyperDQN Algorithm

- ► Compared with DQN, our method incorporates the hypermodel for randomized exploration.
 - Can be regarded as an extension of hypermodel from bandit to RL tasks.
- ► Importantly, there is *NO* epsilon-greedy in HyperDQN.
 - Surprisingly, many existing advanced exploration methods [Osband et al., 2016a, Rashid et al., 2020, Bai et al., 2021] rely on epsilon-greedy.
 - Without epsilon-greedy, the performance of these methods could degenerate
- ► We find that using epsilon-greedy for HyperDQN ruins deep-insight behaviors and leads to a worse performance (Figure 4).

HyperDQN 22 / 37

HyperDQN Algorithm

- ► Compared with DQN, our method incorporates the hypermodel for randomized exploration.
 - Can be regarded as an extension of hypermodel from bandit to RL tasks.
- ► Importantly, there is *NO* epsilon-greedy in HyperDQN.
 - Surprisingly, many existing advanced exploration methods [Osband et al., 2016a, Rashid et al., 2020, Bai et al., 2021] rely on epsilon-greedy.
 - Without epsilon-greedy, the performance of these methods could degenerate.
- ► We find that using epsilon-greedy for HyperDQN ruins deep-insight behaviors and leads to a worse performance (Figure 4).

HyperDQN 22 / 37

HyperDQN Algorithm

- ► Compared with DQN, our method incorporates the hypermodel for randomized exploration.
 - Can be regarded as an extension of hypermodel from bandit to RL tasks.
- ► Importantly, there is *NO* epsilon-greedy in HyperDQN.
 - Surprisingly, many existing advanced exploration methods [Osband et al., 2016a, Rashid et al., 2020, Bai et al., 2021] rely on epsilon-greedy.
 - Without epsilon-greedy, the performance of these methods could degenerate.
- ► We find that using epsilon-greedy for HyperDQN ruins deep-insight behaviors and leads to a worse performance (Figure 4).

HyperDQN 22 / 37

Outline

Background & Motivation

HyperDQN

Overview

Training Objective

Experiment Results

Why HyperDQN performs well

Conclusion

Atari

▶ OB2I [Bai et al., 2021]: a SOTA exploration bonus based method.

Figure 3: Human-normalized score over 56 environments in Atari 2600 suite.

HyperDQN has 2x improvement over baselines.

HyperDQN

SuperMarioBros

Table 1: The mean evaluation scores (after 20M frames) for SuperMarioBros games.

	DoubleDQN	BootDQN	OB2I	HyperDQN
SuperMarioBros-1-1-v1	8,698	7,008	4,457	7,924
SuperMarioBros-1-2-v1	5,903	5,665	4,695	8,266
SuperMarioBros-1-3-v1	1,989	1,609	1,583	6,046
SuperMarioBros-2-1-v1	31,247	26,415	14,225	23,046
SuperMarioBros-2-2-v1	1,622	1,092	1,587	1,983
SuperMarioBros-2-3-v1	5,515	5,107	4,401	5,980
SuperMarioBros-3-1-v1	4,463	3,861	3,251	48,384
SuperMarioBros-3-2-v1	20,511	20,954	26,508	41,139
SuperMarioBros-3-3-v1	3,416	2,650	3,009	5,568

HyperDQN outperforms over baselines in 7/9 games.

SuperMarioBros

Figure 4: Ablation study about epsilon-greedy in HyperDQN.

Using epsilon-greedy ruins randomized exploration behaviors of HyperDQN.

SuperMarioBros

Figure 5: Ablation study about informative prior in HyperDQN.

Using an informative prior model in Objective function (2) could accelerate exploration.

HyperDQN 27/37

Computation Efficiency

- ► Computation complexity comparison with BootDQN on Deep-Sea [Osband et al., 2020].
- ▶ The metric is (a smaller number indicates a better performance):

computation complexity =
$$n_{\text{sgd}} \times n_z \times K$$
.

- n_{sgd} is the number of SGD steps per iteration
- n_z is the number of ensemble (index) samples,
- K is the number of episode that the episode return is 0.99.

	deep-sea-10	deep-sea-15	deep-sea-20	deep-sea-25	deep-sea-30
BootDQN	130K	250K	490K	870K	1,640K
HyperDQN	48K	104K	196K	304K	1,120K

Outline

Background & Motivation

HyperDQN

Overview

Training Objective

Experiment Results

Why HyperDQN performs well?

Conclusion

Posterior Approximation Ability of Hypermodel

- ▶ [Dwaracherla et al., 2020] show that a linear hypermodel has sufficient representation power.
- ► However, [Dwaracherla et al., 2020] do not demonstrate why hypermodel can learn the posterior distribution.

Theorem 1 [Our Work] [Informal

When both base & hypermodel are linear, hypermodel can generate approximate posterior samples of θ^* .

Posterior Approximation Ability of Hypermodel

- ▶ [Dwaracherla et al., 2020] show that a linear hypermodel has sufficient representation power.
- ► However, [Dwaracherla et al., 2020] do not demonstrate why hypermodel can learn the posterior distribution.

Theorem 1 [Our Work] [Informal]

When both base & hypermodel are linear, hypermodel can generate approximate posterior samples of θ^* .

Posterior Approximation Ability of Hypermodel

Figure 6: Visualization of true posterior samples and learned posterior samples.

Hypermodel can approximate the posterior distribution with the z-dependent noise $z^{\top}\xi$.

Outline

Background & Motivation

HyperDQN

Overview

Training Objective

Experiment Results

Why HyperDQN performs well

Conclusion

Conclusion 32 / 37

Conclusion

Summary

- ▶ Practical randomized exploration method with **strong empirical performance**.
- Provide understanding of why the hypermodel works.

Future Work

- Extension to continuous control tasks.
- ▶ **Informative prior** to accelerate exploration.

Conclusion 33 / 37

Conclusion

Summary

- ▶ Practical randomized exploration method with **strong empirical performance**.
- ► Provide **understanding of why** the hypermodel works.

Future Work

- Extension to continuous control tasks.
- ▶ Informative prior to accelerate exploration.

Conclusion 33 / 37

References I

- K. Azizzadenesheli, E. Brunskill, and A. Anandkumar. Efficient exploration through bayesian deep q-networks. In Information Theory and Applications Workshop, pages 1–9, 2018.
- C. Bai, L. Wang, L. Han, J. Hao, A. Garg, P. Liu, and Z. Wang. Principled exploration via optimistic bootstrapping and backward induction. In Proceedings of the 38th International Conference on Machine Learning, pages 577–587, 2021.
- Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov. Exploration by random network distillation. In Proceedings of the 7th International Conference on Learning Representations, 2019.
- V. Dwaracherla, X. Lu, M. Ibrahimi, I. Osband, Z. Wen, and B. Van Roy. Hypermodels for exploration. In <u>Proceedings of the 8th International Conference on Learning Representations</u>, 2020.

Conclusion 34 / 37

References II

- T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep reinforcement learning. In Proceedings of the 4th International Conference on Learning Representations, 2016.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.
- I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped DQN. In Advances in Neural Information Processing Systems 29, pages 4026–4034, 2016a.
- I. Osband, B. V. Roy, and Z. Wen. Generalization and exploration via randomized value functions. In <u>Proceedings of the 33rd International Conference on Machine Learning</u>, pages 2377–2386, 2016b.

Conclusion 35 / 37

References III

- Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore, C. Szepesvári, S. Singh, B. V. Roy, R. S. Sutton, D. Silver, and H. van Hasselt. Behaviour suite for reinforcement learning. In <u>Proceedings of the 8th International Conference on Learning Representations</u>, 2020.
- D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-supervised prediction. In <u>Proceedings of the 34th International Conference on Machine</u> <u>Learning</u>, pages 2778–2787, 2017.
- T. Rashid, B. Peng, W. Boehmer, and S. Whiteson. Optimistic exploration even with a pessimistic initialisation. In <u>Proceedings of the 8th International Conference on Learning Representations</u>, 2020.
- B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning with deep predictive models. arXiv, 1507.00814, 2015.

Conclusion 36 / 37

References IV

H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and
 P. Abbeel. #exploration: A study of count-based exploration for deep reinforcement learning.
 In Advances in Neural Information Processing Systems 30, pages 2753–2762, 2017.

Conclusion 37 / 37