No-Regret Learning in Unknown Game with Applications

Yingru Li
yingruli@link.cuhk.edu.cn

The Chinese University of Hong Kong, Shenzhen, China

August 23, 2022

Outline

Motivations

Algorithms
Failure example
Simple fix

Performance bounds

Empirical investigations

Concluding remarks

Matrix game with known utilities

- Matrix game: Foundation of game theory [Neumann and Morgenstern (44')].
- Traditional goal: find Nash equilibrium
- Known utilities in advance: Linear Programming ; One-shot game.
- Not realistic in many applications.

Matrix game with known utilities

- Matrix game: Foundation of game theory [Neumann and Morgenstern (44')].
- Traditional goal: find Nash equilibrium
- Known utilities in advance: Linear Programming ; One-shot game.
- Not realistic in many applications.

Unknown Game: Matrix game with unknown utilities

- Reality: Outcome of the game revealed after playing;
- One-shot game is hopeless.
- Reality: Bob may not be truly adversarial;
- Alice can play better than Nash.
\rightarrow In repeated play, Alice can hope to learn to play well against the particular opponent
 (Bob) being faced

Unknown Game: Matrix game with unknown utilities

- Reality: Outcome of the game revealed after playing;
- One-shot game is hopeless.
- Reality: Bob may not be truly adversarial;
- Alice can play better than Nash.
- In repeated play, Alice can hope to learn to play well against the particular opponent
 (Bob) being faced.

Repeated Unkonwn Game with full information feedback

[Freund and Schapire. (99'), Hart and Mas-Colell (00^{\prime}), Games and Economic Behavior.] At round t, Alice select a_{1} and observe the column b_{2} which contains the entries other than a_{1}.

Repeated Unkonwn Game with bandit information feedback

Our practical setup: the only feedback at round t is Noisy bandit feedback + Opponent's action. Noise W comes from environment's random effect.

Applictions

- Applications in Signal Processing: e.g. Radar Anti-Jamming
- Applications in Transportation: e.g. Traffic Routing

Application in Signals: Radar Anti-Jamming

- Scenario: Radar aims to detect the target with sequence of signals (repeated game playing) while jammer aims to prevent.
- Action set: frequencies $\left\{f_{0}, f_{1}, \ldots, f_{N}\right\}$.
- Utility of Radar: the detection probability on the target.
- Environment randomness: channel and system noise.

Application in Signals: Radar Anti-Jamming

Feedback for Radar:

1. Radar receives echo signal + jamming signal
2. Opponent's action: Frequency of jamming signal extracted from received signals (e.g. FFT)
3. Noisy bandit feedback: Utility can be estimated from received signals

Application in Transportation: Traffic Routing

Simplified scenario: every morning 7:00 in August (repeated games), Alice and Bob choose the routes and start to deliver fix unit of products back and forth from fixed origin to destination.

Action set of Alice: \{Route 1, Route 2, Route 3\}.

Application in Transportation: Traffic Routing

- Day 1: Alice selects route 2 and bob selects the black route,
- Feedback: incurred total travel time during the day (Noisy bandit feedback) and get informed of bob's chosen route (Opponent's action)
- Because of the shared edge between Alice and Bob's routes, the incurred travel time is long.

Application in Transportation: Traffic Routing

- Day 2: Alice learns from day 1 and selects route 1 , and Bob select the black route.
- Feedback: incurred total travel time during the day (Noisy bandit feedback) and get informed of bob's chosen route (Opponent's action)
- Alice suffer less time because of no shared edge in day 2.

Summary and formulation

- Formal protocol: At each round t in the repeated game, Alice selects A_{t} and Bob selects B_{t}; Then, Alice received $R_{t+1, A_{t}, B_{t}}$ and observe $B_{t} \ldots$ (next round)

Round \mathbf{t}	Notation	Radar	Traffic
Action	$A_{t} \in \mathcal{A}$	Frequency	Routes
Others' action	$B_{t} \in \mathcal{B}$	Frequency	Routes
Bandit feedback for Alice	$R_{t+1, A_{t}, B_{t}}$	Probability of detection	Incurred travel time
Additional observations for Alice	B_{t}	Jammer's frequency extracted from received signals	Other agent' selected routes
Alice's Objective	$\sum_{t=0}^{T-1} \mathbb{E}\left[R_{t+1, A_{t}, B_{t}}\right]$	Max Probability of detection in many rounds of game	Min Total travel time in a month

Relation to existing problem setups and popular algorithms

Setup: Full information game

- Relation: full column vector instead of just one entry.
- Famous algorithms: Multiplicative-weights [Littlestone and Warmuth, 94'] / Hedge [Freund and Schapire, 97', 99'], Regret Matching [Hart and Mas-Colell, 00']
- Drawback of the setup: Feedback not realistic in applications.

Relation to existing problem setups and popular algorithms

Setup: Adversarial bandit

- Relation: if opponent is fully adversarial and we cannot observe opponent's action.
- Famous algorithm: EXP3 [Auer, Cesa-Bianchi, Freund, Schapire. 03' SIAM J. Comput.] and its variants [Bubeck, Lee, Lee, Eldan. 17' STOC]
- Drawback of the setup: Ignore the fact the underlying utility function is static during the game and may have structure among actions.

Relation to existing problem setups and popular algorithms

Setup: Stochastic bandit

- Relation: if opponent is stationary and we cannot observe opponent's action.
- Famous algorithm: Thompson sampling (TS) [Thomson, 33'; Russo, Van Roy, Kazerouni, Osband and Wen, 18' Foundations and Trends]
- Drawback of the setup: Opponent is usually smarter than just playing stationarily.

Outline

Motivations

Algorithms
Failure example
Simple fix
Performance bounds
Empirical investigations
Concluding remarks

Quick recap and abstraction: Player-Environment-Player Interface

- For a environment instance indexed by θ,
- At each time $t=0,1, \ldots$,
- Alice executes an action A_{t}; Simultaneously, Bob executes an action B_{t}; After execution,
- Alice observes the reward,
(1) Full feedback (not realistic):

$$
R_{t+1, a, B_{t}}=f_{\theta}\left(a, B_{t}\right), \quad \forall a \in \mathcal{A}
$$

(2) Noisy bandit feedback (realistic):

$$
R_{t+1, A_{t}, B_{t}}=f_{\theta}\left(A_{t}, B_{t}\right)+W_{t+1, A_{t}, B_{t}}
$$

- (Optional and realistic) Meanwhile, Alice can observe Bob's selected action B_{t}.
- Research interest: Noisy bandit feedback + Observe Opponent's action.

No-regret algorithms for full-information feedback

```
Algorithm No Regret for full-information feedback
    1: Initialize \(\mathcal{A}\)-dim probability vector \(X_{1}\)
    for round \(t=1,2, \ldots, T\) do
        Sample action \(A_{t}\) from distribution \(P_{X_{t}}\) according to \(X_{t}\),
    4: Observe full-information feedback \(f_{\theta}\left(a, B_{t}\right)\) for all \(a \in \mathcal{A}\)
    5: Update: \(X_{t+1}=g_{t}\left(X_{t},\left(f_{\theta}\left(a, B_{t}\right)\right)_{a \in \mathcal{A}}\right)\) with no-regret update \(g_{t}\)
    6: end for
```

Two no-regret update algorithm can be applied to this scenario: (require $f_{\theta}(a, b)$ bounded)

- Hedge (97'): $X_{t+1, a} \propto X_{t, a} \exp \left(\eta_{t} f_{\theta}\left(a, B_{t}\right)\right)$ for all $a \in \mathcal{A}$.
- Regret Matching (00^{\prime}): see next page.

Regret Matching in full information feedback

- instantaneous regret vector $\operatorname{reg}_{t+1} \in \mathbb{R}^{\mathcal{A}}$

$$
\operatorname{reg}_{t+1}(a)=f_{\theta}\left(a, B_{t}\right)-\sum_{a} f_{\theta}\left(a, B_{t}\right) X_{t, a}
$$

- Cumulative regret vector Reg_{t+1}

$$
\operatorname{Reg}_{t+1}(a)=\sum_{s=0}^{t} \operatorname{reg}_{s+1}(a)
$$

- Regret Matching update rule: If $\sum_{a} R e g_{t+1}^{+}(a)=0$, choose arbitrary probability vector X_{t+1} (usually we choose uniform dist.); otherwise, $\forall a \in \mathcal{A}$,

$$
X_{t+1, a}=\frac{\operatorname{Reg}_{t+1}^{+}(a)}{\sum_{a} \operatorname{Reg}_{t+1}^{+}(a)}, \text { where } x^{+}:=\max (x, 0)
$$

History-dependent Randomized Algorithm for bandit feedack and oppnent's action observation

- Alice's experience through time t is encoded by a history

$$
H_{t}=\left(A_{0}, B_{0}, R_{1, A_{0}, B_{0}}, \ldots, A_{t-1}, B_{t-1}, R_{t, A_{t-1}, B_{t-1}}\right)
$$

- An algorithm (randomized policy) employed by Alice is a sequence of deterministic functions,

$$
\pi^{\mathrm{alg}}=\left(\pi_{t}\right)_{t \in \mathbb{N}}
$$

where $\pi_{t}\left(H_{t}\right)$ specifies a probability distribution over the action set \mathcal{A},

- Alice select the action according to $A_{t} \sim \pi_{t}\left(H_{t}\right)$:

$$
\mathbb{P}\left(A_{t} \in \cdot \mid \pi_{t}\right)=\mathbb{P}\left(A_{t} \in \cdot \mid H_{t}\right)=\pi_{t}(\cdot)
$$

Objective function from Alice's perspective

- We also allow Bob use alg^{B} to select his actions B_{0}, B_{1}, \ldots
- Alice's objective is to maximize expected reward over some long duration T :

$$
\sum_{t=0}^{T-1} \mathbb{E}\left[R_{t+1, A_{t}, B_{t}} \mid \theta\right]
$$

- We compete with the best action in hindsight $A^{*}=\max _{a \in \mathcal{A}} \sum_{t=0}^{T-1} \mathbb{E}\left[R_{t+1, a, B_{t}} \mid \theta\right]$
- Naturally, our performance metric is (Adversarial) Regret:

$$
\Re\left(T, \pi^{\mathrm{alg}}, a l g^{B}, \theta\right)=\max _{a} \sum_{t=0}^{T-1} \mathbb{E}\left[R_{t+1, a, B_{t}}-R_{t+1, A_{t}, B_{t}} \mid \theta\right]
$$

No-regret Learning in Game from Alice's perspective

- We say an algorithm $\pi_{\text {alg }}$ is No-Regret, if for any possible algorithm alg B used by Bob, Alice can suffer only sublinear regret, i.e.

$$
\Re^{*}\left(T, \pi^{\operatorname{alg}}, \theta\right)=\sup _{\operatorname{alg}^{B}} \Re\left(T, \pi^{\mathrm{alg}}, \text { alg }{ }^{B}, \theta\right)=o(T)
$$

- That is,

$$
\lim _{T \rightarrow \infty} \frac{\Re^{*}\left(T, \pi^{\mathrm{alg}}, \theta\right)}{T}=0
$$

Estimation with history and then No-regret update in our setting

```
Algorithm Estimate-then-NoRegret for bandit feedback
    Initialize \(X_{1}\)
    for round \(t=1,2, \ldots, T\) do
        Sample action \(A_{t} \sim P_{X_{t}}\)
        Observe opponent's action \(B_{t}\) and noisy bandit feedback \(R_{t+1, A_{t}, B_{t}}\).
        Update historical information \(H_{t+1}=\left(H_{t}, A_{t}, B_{t}, R_{t+1}\right)\) for player \(i\)
        Construct: \(\tilde{R}_{t+1}=E\left(H_{t+1}\right) \in \mathbb{R}^{\mathcal{A}}\) by estimation function \(E\),
        Update: \(X_{t+1}=g_{t}\left(X_{t}, \tilde{R}_{t+1}\right)\)
    end for
```


The price of bandit information compared with full information

Table: Regret bounds comparison.

Feedback	Full	Bandit	Bandit + Actions
Reward vector		direct from feedback	IWE

- Importance-weighted estimator (IWE) do not utilize the information of opponents' actions.
- With additional information of opponent's actions and the knowledge on reward structure $\mathcal{F}=\left\{f_{\rho}: \rho \in \Theta\right\}$, can we have better performance, theoretically and practically?

Outline

Motivations

Algorithms
Failure example
Simple fix
Performance bounds
Empirical investigations
Concluding remarks

Natural attempt: Mean estimator and Thompson Sampling

- With history $H_{t+1}=\left(H_{t}, A_{t}, B_{t}, R_{t+1, A_{t}, B_{t}}\right)$, assume gaussian prior,
- Mean estimator of the full vector by posterior mean μ_{t} summarizing history H_{t}

$$
\tilde{R}_{t+1}^{\mu}(a)=\operatorname{clip}_{[0,1]}\left(\mu_{t}\left(a, B_{t}\right)\right), \forall a \in \mathcal{A}
$$

- Thompson sampling estimator of the full vector by posterior mean μ_{t} and variance σ_{t} summarizing H_{t}

$$
\tilde{f}_{t+1}^{T S}\left(a, B_{t}\right) \mid H_{t+1} \sim N\left(\mu_{t}\left(a, B_{t}\right), \sigma_{t}\left(a, B_{t}\right)\right), \forall a \in \mathcal{A}
$$

and

$$
\tilde{R}_{t+1}^{T S}(a)=\operatorname{clip}_{[0,1]}\left(\tilde{f}_{t+1}^{T S}\left(a, B_{t}\right)\right), \forall a \in \mathcal{A}
$$

Simple example showing divergence of RM with Mean or TS

- Consider a class of matrix game instances where $\Delta \in(0,1)$ is the gap variable

$$
\theta=\left(\begin{array}{cc}
1 & 1-\Delta \\
1-\Delta & 1
\end{array}\right)
$$

- Best-response opponent: Bob have all information of the matrix θ and know Alice's mixed strategy X_{t} before choosing its own strategy Y_{t} and select $B_{t} \sim Y_{t}$,

$$
Y_{t}=\underset{y \in \Delta}{\arg \min } y^{T}\left(\theta X_{t}\right),
$$

- Assume no observation noise.

Proposition 1 (Divergence).

Alice using Regret Matching with Mean Estimator (Mean-RM) or Thompson Sampling Estimator (TS-RM) will suffer linear regret.

Simple example showing divergence of RM with Mean or TS

$$
\theta=\left(\begin{array}{cc}
1 & 1-\Delta \\
1-\Delta & 1
\end{array}\right)
$$

- Observation 1: As long as a pure strategy is used by the Alice, it suffers regret Δ at that round because of the best-response opponent.
- Observation 2: The best-response strategy for the uniform mixed strategy is also the uniform strategy.

Simple example showing divergence of Mean and TS

$$
\theta=\left(\begin{array}{cc}
1 & 1-\Delta \\
1-\Delta & 1
\end{array}\right)
$$

By symmetry, define the following event,

- Event ω_{t} : Alice picks the 2nd row and Bob chooses the 1st column at time t.
- Event Ω_{t} : Alice picks the 2nd row and Bob chooses the 1st column for all time $t^{\prime} \leqslant t$.

Proposition 2.

If Alice initialize with uniform strategy,

$$
\Re(T) \geqslant 2 \mathbb{P}\left(\Omega_{T}\right) \Delta T
$$

If Ω_{t} happens with constant probability for all $t \geqslant 1$, then Alice suffer linear regret.

Divergence of Mean-RM and TS-RM

Proposition 3 (Mean-RM).

If Alice initialize with uniform strategy and use Regret Matching with mean estimator (Mean-RM), for all round $t \geqslant 1, \mathbb{P}\left(\Omega_{t}\right)=0.25$.

Proposition 4 (TS-RM)
If Alice initialize with uniform strategy and use Regret Matching with Thompson Sampling estimator (TS-RM), $\forall \Delta \in(0,1), \forall \sigma_{w}>0, \exists c\left(\Delta, \sigma_{w}\right)>0$, for all round $t \geqslant 1$

Specifically, when $\Delta=0.1$ and $\sigma_{w}=0.1$ (used to update posterior algorithmically), we have
$c\left(\Delta, \sigma_{w}\right) \approx 0.54$

Divergence of Mean-RM and TS-RM

Proposition 3 (Mean-RM).

If Alice initialize with uniform strategy and use Regret Matching with mean estimator (Mean-RM), for all round $t \geqslant 1, \mathbb{P}\left(\Omega_{t}\right)=0.25$.

Proposition 4 (TS-RM).

If Alice initialize with uniform strategy and use Regret Matching with Thompson Sampling estimator (TS-RM), $\forall \Delta \in(0,1), \forall \sigma_{w}>0, \exists c\left(\Delta, \sigma_{w}\right)>0$, for all round $t \geqslant 1$,

$$
\mathbb{P}\left(\Omega_{t}\right) \geqslant c\left(\Delta, \sigma_{w}\right)
$$

Specifically, when $\Delta=0.1$ and $\sigma_{w}=0.1$ (used to update posterior algorithmically), we have $c\left(\Delta, \sigma_{w}\right) \approx 0.54$.

Divergence of Mean-RM and TS-RM

Corollary 1.

As a corollary of proposition 2, proposition 3 and proposition 4, Mean-RM and TS-RM would suffer linear regret.

Divergence of Mean-RM

- $\mathbb{P}\left(w_{1}\right)=0.25$ by uniform strategy initialization
- Conditioned on ω_{1}, following the Mean-RM algorithm:
- Each round $t=0,1, \ldots$,
- Alice received $R_{t+1,2 n d, 1 s t}=1-\Delta$
- Use the mean estimator to construct imagined reward vector $\tilde{R}_{t+1}^{\mu}=[0,1-\Delta]$ - and construct the instantaneous and cumulative regret vector

- By regret matching update rule, Alice' strategy for next time $X_{t+1}=[0,1]$ is still the pure strategy of 2nd row. This implies that Bob's next strategy is still 1st column.
 \rightarrow As a result, $\mathbb{P}\left(\Omega_{t} \mid w_{1}\right)=1, \forall t \geqslant 1$, i.e., Alice will always suffer linear regret.

Divergence of Mean-RM

- $\mathbb{P}\left(w_{1}\right)=0.25$ by uniform strategy initialization
- Conditioned on ω_{1}, following the Mean-RM algorithm:
- Each round $t=0,1, \ldots$,
- Alice received $R_{t+1,2 n d, 1 s t}=1-\Delta$
- Use the mean estimator to construct imagined reward vector $\tilde{R}_{t+1}^{\mu}=[0,1-\Delta]$
- and construct the instantaneous and cumulative regret vector

$$
\operatorname{reg}_{t+1}=[\Delta-1,0], \quad \operatorname{Reg}_{t+1}=[\underbrace{(0.5-t-1)(1-\Delta)}_{\text {Negative }}, 0.5(1-\Delta)]
$$

- By regret matching update rule, Alice' strategy for next time $X_{t+1}=[0,1]$ is still the pure strategy of 2 nd row. This implies that Bob's next strategy is still 1st column.

Divergence of Mean-RM

- $\mathbb{P}\left(w_{1}\right)=0.25$ by uniform strategy initialization
- Conditioned on ω_{1}, following the Mean-RM algorithm:
- Each round $t=0,1, \ldots$,
- Alice received $R_{t+1,2 n d, 1 s t}=1-\Delta$
- Use the mean estimator to construct imagined reward vector $\tilde{R}_{t+1}^{\mu}=[0,1-\Delta]$
- and construct the instantaneous and cumulative regret vector

$$
\operatorname{reg}_{t+1}=[\Delta-1,0], \quad \operatorname{Reg}_{t+1}=[\underbrace{(0.5-t-1)(1-\Delta)}_{\text {Negative }}, 0.5(1-\Delta)]
$$

- By regret matching update rule, Alice' strategy for next time $X_{t+1}=[0,1]$ is still the pure strategy of 2nd row. This implies that Bob's next strategy is still 1st column.
\Rightarrow As a result, $\mathbb{P}\left(\Omega_{t} \mid w_{1}\right)=1, \forall t \geqslant 1$, i.e., Alice will always suffer linear regret.

Divergence of Mean-RM

- $\mathbb{P}\left(w_{1}\right)=0.25$ by uniform strategy initialization
- Conditioned on ω_{1}, following the Mean-RM algorithm:
- Each round $t=0,1, \ldots$,
- Alice received $R_{t+1,2 n d, 1 s t}=1-\Delta$
- Use the mean estimator to construct imagined reward vector $\tilde{R}_{t+1}^{\mu}=[0,1-\Delta]$
- and construct the instantaneous and cumulative regret vector

$$
\operatorname{reg}_{t+1}=[\Delta-1,0], \quad \operatorname{Reg}_{t+1}=[\underbrace{(0.5-t-1)(1-\Delta)}_{\text {Negative }}, 0.5(1-\Delta)]
$$

- By regret matching update rule, Alice' strategy for next time $X_{t+1}=[0,1]$ is still the pure strategy of 2nd row. This implies that Bob's next strategy is still 1st column.
- As a result, $\mathbb{P}\left(\Omega_{t} \mid w_{1}\right)=1, \forall t \geqslant 1$, i.e., Alice will always suffer linear regret.

Divergence of TS-RM

- By regret matching update rule,
- Conditioned on Ω_{t}, Alice will still use pure strategy of 2 nd column if
- the 1st entry of cumulative regret calculated by TS estimator $\leqslant 0$
- We show that there exist some constant $c>0$ such that $\mathcal{P}\left(\Omega_{t}\right) \geqslant c, \forall t \in \mathbb{Z}_{+}$by iteratively calculating the conditional probability,

$$
\mathbb{P}\left(\Omega_{t}\right)=\mathbb{P}\left(\omega_{1}\right) \mathbb{P}\left(\omega_{2} \mid \Omega_{1}\right) \ldots \mathbb{P}\left(\omega_{t} \mid \Omega_{t-1}\right)
$$

- Specifically, when $\Delta=0.1$ and $\sigma_{w}=0.1$ (used to update posterior algorithmically), we have

$$
c \approx 0.54
$$

Outline

Motivations

Algorithms
Failure example
Simple fix
Performance bounds
Empirical investigations
Concluding remarks

A simple fix: Optimistic Sampling

- Independently sample M_{t+1} TS estimators

$$
\tilde{f}_{t+1}^{T S, j}\left(a, B_{t}\right) \mid H_{t+1} \sim N\left(\mu_{t}\left(a, B_{t}\right), \sigma_{t}\left(a, B_{t}\right)\right), \forall j=1, \ldots, M_{t+1}
$$

- and taking the maximum,

$$
\tilde{f}_{t+1}^{\mathrm{OTS}}\left(a, B_{t}\right)=\max _{j \in\left[M_{t+1}\right]} \tilde{f}_{t+1}^{\mathrm{TS}, j}\left(a, B_{t}\right)
$$

- Construct the imagined reward vector,

$$
\tilde{R}_{t+1}^{\text {OTS }}(a)=\operatorname{clip}_{[0,1]}\left(\tilde{f}_{t+1}^{\mathrm{OTS}}\left(a, B_{t}\right)\right), \forall a \in \mathcal{A}
$$

Apply Optimistic Sampling in the Counter example

Figure: Failure ratio for TS-RM and OTS-RM with different problem setups (specified by Delta and noise variance).

Why OTS works with larger M_{t+1} ?

- Assumed Alice always take the suboptimal action until time t, i.e. Ω_{t} happens,
- if Alice want to stop taking the suboptimal action and suffering Δ regret, Alice has move from the pure strategy $[0,1]$ to mixed strategy
- by Regret Matching, a sufficient condition for mixed strategy at this situation is to keep $\tilde{R}_{t+1}^{O T S}(1 s t)>\tilde{R}_{t+1}^{O T S}(2 n d)$.
- By optimistic sampling,

$$
\left\{\begin{array}{l}
\tilde{f}_{t+1, j}^{T S, 1 s t, 1 s t) \sim N(0,1), \quad j=1, \ldots, M} \tag{1}\\
\tilde{f}_{t+1}^{T S, j}(2 n d, 1 s t) \sim N\left(\frac{t}{t+\sigma_{w}^{2}}(1-\Delta), \frac{\sigma_{w}^{2}}{\sigma_{w}^{2}+t}\right), \quad j=1, \ldots, M
\end{array}\right.
$$

then $\tilde{R}_{t+1}^{O T S}(1 s t)=\max _{j \in[M]} \tilde{f}_{t+1}^{T S, j}(1 s t, 1 s t)$ and $\tilde{R}_{t+1}^{O T S}(2 n d)=\max _{j \in[M]} \tilde{f}_{t+1}^{T S, j}(2 n d, 1 s t)$.

Key insight of optimistic sampling: anti-concentration

Lemma 2 (Anti-concentration property of maximum of Gaussian R.V.).
Consider a normal distribution $N\left(0, \sigma^{2}\right)$ where σ is a scalar. Let $\eta_{1}, \eta_{2}, \ldots, \eta_{M}$ be M independent samples from the distribution. Then for any $\delta>0$

$$
\mathbb{P}\left(\max _{j \in[M]} \eta_{j} \leqslant \sqrt{2 \sigma^{2} \log (1 / \delta)}\right) \geqslant 1-M \delta .
$$

According to the anti-concentration property,

$$
\begin{equation*}
\mathbb{P}\left(\tilde{R}_{t+1}^{O T S}(1 s t) \leqslant \frac{t}{t+\sigma_{w}^{2}}(1-\Delta)+\sqrt{\frac{2 \sigma_{w}^{2} \log \left(M / \delta_{1}\right)}{t+\sigma_{w}^{2}}}\right) \geqslant 1-\delta_{1} \tag{2}
\end{equation*}
$$

The probability of $\tilde{R}_{t+1}^{O T S}(1 s t)>\tilde{R}_{t+1}^{O T S}(2 n d)$

Now, we calculate the probability of

$$
\tilde{R}_{t+1}^{O T S}(1 s t)>\frac{t}{t+\sigma_{w}^{2}}(1-\Delta)+\sqrt{\frac{2 \sigma_{w}^{2} \log \left(M / \delta_{1}\right)}{t+\sigma_{w}^{2}}}
$$

Lemma 3.

Consider a normal distribution $N\left(0, \sigma^{2}\right)$ where σ is a scalar. Let $\eta_{1}, \eta_{2}, \ldots, \eta_{M}$ be M independent samples from the distribution. For any $w \in \mathbb{R}_{+}$,

$$
\mathbb{P}\left(\max _{j \in[M]} \eta_{j} \geqslant w\right)=1-\left[\Phi\left(\frac{w}{\sigma}\right)\right]^{M}
$$

The probability of $\tilde{R}_{t+1}^{O T S}(1 s t)>\tilde{R}_{t+1}^{O T S}(2 n d)$

Outline

Motivations

Algorithms
 Failure example
 Simple fix

Performance bounds

Empirical investigations

Concluding remarks

General Regret Bound

- We introduce an imagined reward vector sequence $\tilde{R}_{t+1} \in[0,1]^{\mathcal{A}}$, where each \tilde{R}_{t+1} is constructed using history information H_{t} with algorithmic randomness.
- For any $a \in \mathcal{A}$, the one-step regret can be decomposed by

$$
\begin{align*}
& \mathbb{E}[R_{t+1, a, B_{t}}-R_{\left.t+1, A_{t}, B_{t} \mid \theta\right]=\mathbb{E}\left[f_{\theta}\left(a, B_{t}\right)-f_{\theta}\left(A_{t}, B_{t}\right) \mid \theta\right]}^{=\underbrace{\mathbb{E}\left[\tilde{R}_{t+1}(a)-\tilde{R}_{t+1}\left(A_{t}\right) \mid \theta\right]}_{(I)}+\underbrace{\mathbb{E}\left[f_{\theta}\left(a, B_{t}\right)-\tilde{R}_{t+1}(a) \mid \theta\right]}_{(I I)}+\underbrace{\mathbb{E}\left[\tilde{R}_{t+1}\left(A_{t}\right)-f_{\theta}\left(A_{t}, B_{t}\right) \mid \theta\right]}_{(I I)}} .
\end{align*}
$$

- Summation of (I) reduces to adversarial regret of Hedge or RM for bounded sequence \tilde{R}_{t+1} - $(I I) \leqslant \mathbb{P}\left(f_{a, B_{t}} \geqslant \tilde{R}_{t+1}(a)\right) \leqslant \mathcal{O}(1 / \sqrt{T})$ is small by select proper $M_{t+1} .\left(M_{t+1}=1\right.$ which is TS, cannot satisfy. One reason we need modified TS.)
$\rightarrow(I I I)$ can be bounded by $\mathcal{O}\left(\sigma_{t}\left(A_{t}, B_{t}\right)\right)$ and further bounded by one-step information gain $I\left(\theta ; R_{t+1, A_{+} B_{+}} \mid H_{t}\right)$ using differential entropy of gaussian distribution.

General Regret Bound

- We introduce an imagined reward vector sequence $\tilde{R}_{t+1} \in[0,1]^{\mathcal{A}}$, where each \tilde{R}_{t+1} is constructed using history information H_{t} with algorithmic randomness.
- For any $a \in \mathcal{A}$, the one-step regret can be decomposed by

$$
\begin{align*}
& \mathbb{E}[R_{t+1, a, B_{t}}-R_{\left.t+1, A_{t}, B_{t} \mid \theta\right]=\mathbb{E}\left[f_{\theta}\left(a, B_{t}\right)-f_{\theta}\left(A_{t}, B_{t}\right) \mid \theta\right]}^{=\underbrace{\mathbb{E}\left[\tilde{R}_{t+1}(a)-\tilde{R}_{t+1}\left(A_{t}\right) \mid \theta\right]}_{(I)}+\underbrace{\mathbb{E}\left[f_{\theta}\left(a, B_{t}\right)-\tilde{R}_{t+1}(a) \mid \theta\right]}_{(I I)}+\underbrace{\mathbb{E}\left[\tilde{R}_{t+1}\left(A_{t}\right)-f_{\theta}\left(A_{t}, B_{t}\right) \mid \theta\right]}_{(I I I)}}
\end{align*}
$$

- Summation of (I) reduces to adversarial regret of Hedge or RM for bounded sequence \tilde{R}_{t+1}. which is TS, cannot satisfy. One reason we need modified TS.)
- (III) can be bounded by $\mathcal{O}\left(\sigma_{t}\left(A_{t}, B_{t}\right)\right)$ and further bounded by one-step information gain $I\left(\theta ; R_{t+1, A_{t}, B_{t}} \mid H_{t}\right)$ using differential entropy of gaussian distribution

General Regret Bound

- We introduce an imagined reward vector sequence $\tilde{R}_{t+1} \in[0,1]^{\mathcal{A}}$, where each \tilde{R}_{t+1} is constructed using history information H_{t} with algorithmic randomness.
- For any $a \in \mathcal{A}$, the one-step regret can be decomposed by

$$
\begin{align*}
& \mathbb{E}[R_{t+1, a, B_{t}}-R_{\left.t+1, A_{t}, B_{t} \mid \theta\right]=\mathbb{E}\left[f_{\theta}\left(a, B_{t}\right)-f_{\theta}\left(A_{t}, B_{t}\right) \mid \theta\right]}^{=\underbrace{\mathbb{E}\left[\tilde{R}_{t+1}(a)-\tilde{R}_{t+1}\left(A_{t}\right) \mid \theta\right]}_{(I)}+\underbrace{\mathbb{E}\left[f_{\theta}\left(a, B_{t}\right)-\tilde{R}_{t+1}(a) \mid \theta\right]}_{(I I)}+\underbrace{\mathbb{E}\left[\tilde{R}_{t+1}\left(A_{t}\right)-f_{\theta}\left(A_{t}, B_{t}\right) \mid \theta\right]}_{(I I I)}}
\end{align*}
$$

- Summation of (I) reduces to adversarial regret of Hedge or RM for bounded sequence \tilde{R}_{t+1}.
- $(I I) \leqslant \mathbb{P}\left(f_{a, B_{t}} \geqslant \tilde{R}_{t+1}(a)\right) \leqslant \mathcal{O}(1 / \sqrt{T})$ is small by select proper $M_{t+1} .\left(M_{t+1}=1\right.$, which is TS, cannot satisfy. One reason we need modified TS.)
\Rightarrow (III) can be bounded by $\mathcal{O}\left(\sigma_{t}\left(A_{t}, B_{t}\right)\right)$ and further bounded by one-step information gain $I\left(\theta ; R_{t+1, A_{t}, B_{t}} \mid H_{t}\right)$ using differential entropy of gaussian distribution.

General Regret Bound

- We introduce an imagined reward vector sequence $\tilde{R}_{t+1} \in[0,1]^{\mathcal{A}}$, where each \tilde{R}_{t+1} is constructed using history information H_{t} with algorithmic randomness.
- For any $a \in \mathcal{A}$, the one-step regret can be decomposed by

$$
\begin{align*}
& \mathbb{E}[R_{t+1, a, B_{t}}-R_{\left.t+1, A_{t}, B_{t} \mid \theta\right]=\mathbb{E}\left[f_{\theta}\left(a, B_{t}\right)-f_{\theta}\left(A_{t}, B_{t}\right) \mid \theta\right]}^{=\underbrace{\mathbb{E}\left[\tilde{R}_{t+1}(a)-\tilde{R}_{t+1}\left(A_{t}\right) \mid \theta\right]}_{(I)}+\underbrace{\mathbb{E}\left[f_{\theta}\left(a, B_{t}\right)-\tilde{R}_{t+1}(a) \mid \theta\right]}_{(I I)}+\underbrace{\mathbb{E}\left[\tilde{R}_{t+1}\left(A_{t}\right)-f_{\theta}\left(A_{t}, B_{t}\right) \mid \theta\right]}_{(I I I)}}
\end{align*}
$$

- Summation of (I) reduces to adversarial regret of Hedge or RM for bounded sequence \tilde{R}_{t+1}.
- $(I I) \leqslant \mathbb{P}\left(f_{a, B_{t}} \geqslant \tilde{R}_{t+1}(a)\right) \leqslant \mathcal{O}(1 / \sqrt{T})$ is small by select proper $M_{t+1} .\left(M_{t+1}=1\right.$, which is TS, cannot satisfy. One reason we need modified TS.)
- (III) can be bounded by $\mathcal{O}\left(\sigma_{t}\left(A_{t}, B_{t}\right)\right)$ and further bounded by one-step information gain $I\left(\theta ; R_{t+1, A_{t}, B_{t}} \mid H_{t}\right)$ using differential entropy of gaussian distribution.

Preview of the bounds

- Problem-dependent quantity: information gain $\gamma_{T}(\theta):=I\left(\theta ; A_{0}, B_{0}, \ldots, A_{T-1}, B_{T-1}\right)$ depends on underlying reward structure.
- Define $\gamma_{T}(\theta, \mathcal{A}, \mathcal{B}):=\min \left(\gamma_{T}(\theta), \sqrt{\mathcal{A B} \log \mathcal{A B}}\right)$

Table: Regret bounds comparison.

Feedback	Full	Bandit	Bandit + Actions
Imagined	-	IWE	OTS [Ours]
No-Regret	Hedge	$\mathcal{O}(\sqrt{T \log \mathcal{A}})$	$\mathcal{O}(\sqrt{T \mathcal{A} \log \mathcal{A}})$
	RM	$\mathcal{O}\left(\sqrt{T \log \mathcal{A}}+\gamma_{T}(\theta, \mathcal{A}, \mathcal{B}) \sqrt{T \mathcal{A}}\right)$	$\mathcal{O}\left(T^{2 / 3} \mathcal{A}^{2 / 3}\right)$

Discussion on the bounds

By the results from [Srinivas, TIT09'] which gives the bounds of γ_{T} for a range of commonly used covariance functions: finite dimensional linear, squared exponential and Matern kernels.

Table: Maximum information gain γ_{T}.

Kernel	Linear	Squared exponential	Materns $(v>1)$
$\gamma_{T}(\theta)$	$\mathcal{O}(d \log T)$	$\mathcal{O}\left((\log T)^{d+1}\right)$	$\mathcal{O}\left(T^{d(d+1) /(2 v+d(d+1))}(\log T)\right)$

- For example, if using squared exponential bounds, the final regret of OTS-Hedge is

$$
\mathcal{O}\left(\left(\sqrt{\log \mathcal{A}}+\log (T)^{d+1}\right) \sqrt{T}\right)
$$

which has no polynomial dependence on action sizes $\mathcal{A} \times \mathcal{B}$, similar to full information setting.

- Curse of multi-agent is resolved: $|\mathcal{B}|$ is exponential in the number of opponents

Outline

Motivations

Algorithms
 Failure example
 Simple fix
 Performance bounds
 Empirical investigations

Concluding remarks

Type of opponents

- Self-play (regret minimizing) opponent: alg ${ }^{B}$ can be history-dependent randomized algorithm,
- Best-response opponent: alg B can access exact information of the mean reward function f_{θ} and Alice' mixed strategy $\pi_{t}(\cdot)$ before sampling B_{t},
- Stationary opponent: alg^{B} always select B_{t} from a stationary distribution,
- Non-stationary opponent: alg B select B_{t} from a changing distribution.

Random matrix game: Self-play (regret-minimizing) opponent

Figure: Matrix size: 70×70. Magnitude advantage of OTS estimator.

Random matrix game: Best-response opponent

Figure: Matrix size: 70×70. Magnitude advantage of OTS estimator.

Random matrix game: Stationary opponent

Figure: Matrix size: 70×70. Magnitude advantage of OTS estimator.

Random matrix game: non-stationary opponent (Robust bandit)

1. A game matrix $\theta \in \mathbb{R}^{10 \times 5}$ is generated with each element sampling from $N(0.5,2.0)$. 2. The opponent's actions are drawn from a fixed strategy that randomly changes every 50 rounds. 3 . Each algorithm performs up to 1000 rounds and 100 simulation runs.

Application: radar anti-jamming

Application: Traffic Routing problem

Outline

Motivations

Algorithms
 Failure example
 Simple fix
 Performance bounds
 Empirical investigations

Concluding remarks

Summary

- Considered a realistic unknown game setting with applications. (Rarely studied area but meaningful and increasingly important!)
- Algorithmic framework for considered setting: Reduction to full-information algorithm with any admissable vector estimator of unknown utility function.
- Proved naive application of mean estimator and Thompson Sampling(TS) estimator fails in a carefully constructed class of simple matrices.
- Proved the regret upper bound of simply modified OTS combined with full-information no-regret algorithms. The decomposition of regret in the proof is general.
- Superior empirical performance in playing against different type of opponents and in the real-world applications: radar and traffic problems.

Future works

- In experiments, we observe that the average regret TS-RM/TS-RM+ converge in self-play setting without optimistic modified. Why?
- Dynamic regret given different type of opponents
- Extension to Markov game: need a good motivation

Acknowledgements

- Collaborators: Liangqi Liu (CUHKSZ), Wenqiang Pu (SRIBD), Hao Liang (CUHKSZ)
- Supervisor: Prof. Zhi-Quan Luo
- Early discussion with Prof. Tong Zhang (HKUST)

