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Matrix game with known utilities

▶ Matrix game: Foundation of game theory
[Neumann and Morgenstern (44’)].

▶ Traditional goal: find Nash equilibrium

▶ Known utilities in advance: Linear
Programming ; One-shot game.

▶ Not realistic in many applications.
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Unknown Game: Matrix game with unknown utilities

▶ Reality: Outcome of the game revealed
after playing;

▶ One-shot game is hopeless.

▶ Reality: Bob may not be truly adversarial;

▶ Alice can play better than Nash.

▶ In repeated play, Alice can hope to learn to
play well against the particular opponent
(Bob) being faced.
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Repeated Unkonwn Game with full information feedback

[Freund and Schapire. (99’), Hart and Mas-Colell (00’), Games and Economic Behavior.]
At round t, Alice select a1 and observe the column b2 which contains the entries other than a1.
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Repeated Unkonwn Game with bandit information feedback

Our practical setup: the only feedback at round t is Noisy bandit feedback + Opponent’s action.
Noise W comes from environment’s random effect.

Foundation of many other models, e.g. Multi-agent reinforcement learning.
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Applictions

▶ Applications in Signal Processing: e.g. Radar Anti-Jamming

▶ Applications in Transportation: e.g. Traffic Routing
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Application in Signals: Radar Anti-Jamming

▶ Scenario: Radar aims to detect the target with sequence of signals (repeated game playing)
while jammer aims to prevent.

▶ Action set: frequencies { f0, f1, . . . , fN}.
▶ Utility of Radar: the detection probability on the target.
▶ Environment randomness: channel and system noise.
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Application in Signals: Radar Anti-Jamming

Feedback for Radar:
1. Radar receives echo signal + jamming signal
2. Opponent’s action: Frequency of jamming signal extracted from received signals (e.g. FFT)
3. Noisy bandit feedback: Utility can be estimated from received signals
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Application in Transportation: Traffic Routing

Simplified scenario: every morning 7:00 in August (repeated games), Alice and Bob choose the
routes and start to deliver fix unit of products back and forth from fixed origin to destination.
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Application in Transportation: Traffic Routing

Action set of Alice: {Route 1, Route 2, Route 3}.
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Application in Transportation: Traffic Routing

▶ Day 1: Alice selects route 2 and bob selects the black route,
▶ Feedback: incurred total travel time during the day (Noisy bandit feedback) and get

informed of bob’s chosen route (Opponent’s action)
▶ Because of the shared edge between Alice and Bob’s routes, the incurred travel time is long.
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Application in Transportation: Traffic Routing

▶ Day 2: Alice learns from day 1 and selects route 1, and Bob select the black route.
▶ Feedback: incurred total travel time during the day (Noisy bandit feedback) and get

informed of bob’s chosen route (Opponent’s action)
▶ Alice suffer less time because of no shared edge in day 2.
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Summary and formulation

▶ Formal protocol: At each round t in the repeated game, Alice selects At and Bob selects Bt;
Then, Alice received Rt+1,At ,Bt and observe Bt ... (next round)
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Relation to existing problem setups and popular algorithms

Setup: Full information game

▶ Relation: full column vector instead of just one entry.

▶ Famous algorithms: Multiplicative-weights [Littlestone and Warmuth, 94’] / Hedge [Freund
and Schapire, 97’, 99’], Regret Matching [Hart and Mas-Colell, 00’]

▶ Drawback of the setup: Feedback not realistic in applications.
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Relation to existing problem setups and popular algorithms

Setup: Adversarial bandit

▶ Relation: if opponent is fully adversarial and we cannot observe opponent’s action.

▶ Famous algorithm: EXP3 [Auer, Cesa-Bianchi, Freund, Schapire. 03’ SIAM J. Comput.]
and its variants [Bubeck, Lee, Lee, Eldan. 17’ STOC]

▶ Drawback of the setup: Ignore the fact the underlying utility function is static during the
game and may have structure among actions.

Motivations 16 / 58



Relation to existing problem setups and popular algorithms

Setup: Stochastic bandit

▶ Relation: if opponent is stationary and we cannot observe opponent’s action.

▶ Famous algorithm: Thompson sampling (TS) [Thomson, 33’; Russo, Van Roy, Kazerouni,
Osband and Wen, 18’ Foundations and Trends]

▶ Drawback of the setup: Opponent is usually smarter than just playing stationarily.
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Quick recap and abstraction: Player-Environment-Player Interface

▶ For a environment instance indexed by θ,
▶ At each time t = 0, 1, . . .,

– Alice executes an action At; Simultaneously, Bob executes an action Bt; After execution,
– Alice observes the reward,

(1) Full feedback (not realistic):

Rt+1,a,Bt = fθ(a, Bt), ∀a ∈ A

(2) Noisy bandit feedback (realistic):

Rt+1,At ,Bt = fθ(At, Bt) + Wt+1,At ,Bt

– (Optional and realistic) Meanwhile, Alice can observe Bob’s selected action Bt.

▶ Research interest: Noisy bandit feedback + Observe Opponent’s action.
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No-regret algorithms for full-information feedback

Algorithm No Regret for full-information feedback

1: Initialize A-dim probability vector X1
2: for round t = 1, 2, . . . , T do
3: Sample action At from distribution PXt according to Xt,
4: Observe full-information feedback fθ(a, Bt) for all a ∈ A
5: Update: Xt+1 = gt(Xt, ( fθ(a, Bt))a∈A) with no-regret update gt
6: end for

Two no-regret update algorithm can be applied to this scenario: (require fθ(a, b) bounded)

▶ Hedge (97’): Xt+1,a ∝ Xt,a exp(ηt fθ(a, Bt)) for all a ∈ A.

▶ Regret Matching (00’): see next page.
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Regret Matching in full information feedback

▶ instantaneous regret vector regt+1 ∈ RA

regt+1(a) = fθ(a, Bt)− ∑
a

fθ(a, Bt)Xt,a

▶ Cumulative regret vector Regt+1

Regt+1(a) =
t

∑
s=0

regs+1(a)

▶ Regret Matching update rule: If ∑a Reg+t+1(a) = 0, choose arbitrary probability vector Xt+1

(usually we choose uniform dist.); otherwise, ∀a ∈ A,

Xt+1,a =
Reg+t+1(a)

∑a Reg+t+1(a)
, where x+ := max(x, 0).
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History-dependent Randomized Algorithm for bandit feedack and

oppnent’s action observation

▶ Alice’s experience through time t is encoded by a history

Ht =
(

A0, B0, R1,A0,B0 , . . . , At−1, Bt−1, Rt,At−1,Bt−1

)
.

▶ An algorithm (randomized policy) employed by Alice is a sequence of deterministic functions,

πalg = (πt)t∈N,

where πt(Ht) specifies a probability distribution over the action set A,
▶ Alice select the action according to At ∼ πt(Ht):

P(At ∈ · | πt) = P(At ∈ · | Ht) = πt(·)
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Objective function from Alice’s perspective

▶ We also allow Bob use algB to select his actions B0, B1, . . .

▶ Alice’s objective is to maximize expected reward over some long duration T:

T−1

∑
t=0

E [Rt+1,At ,Bt | θ]

▶ We compete with the best action in hindsight A∗ = maxa∈A ∑T−1
t=0 E [Rt+1,a,Bt | θ]

▶ Naturally, our performance metric is (Adversarial) Regret:

ℜ(T, πalg, algB, θ) = max
a

T−1

∑
t=0

E [Rt+1,a,Bt − Rt+1,At ,Bt | θ]
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No-regret Learning in Game from Alice’s perspective

▶ We say an algorithm πalg is No-Regret, if for any possible algorithm algB used by Bob,
Alice can suffer only sublinear regret, i.e.

ℜ∗(T, πalg, θ) = sup
algB

ℜ(T, πalg, algB, θ) = o(T),

▶ That is,

lim
T→∞

ℜ∗(T, πalg, θ)

T
= 0.
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Estimation with history and then No-regret update in our setting

Algorithm Estimate-then-NoRegret for bandit feedback

1: Initialize X1
2: for round t = 1, 2, . . . , T do
3: Sample action At ∼ PXt
4: Observe opponent’s action Bt and noisy bandit feedback Rt+1,At ,Bt .
5: Update historical information Ht+1 = (Ht, At, Bt, Rt+1) for player i
6: Construct: R̃t+1 = E(Ht+1) ∈ RA by estimation function E,
7: Update: Xt+1 = gt(Xt, R̃t+1)
8: end for
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The price of bandit information compared with full information

Table: Regret bounds comparison.

Feedback Full Bandit Bandit + Actions

Reward vector direct from feedback IWE ?

No-Regret Update
Hedge O

(√
T logA

)
[97’, 99’] O

(√
TA logA

)
[00’] ?

RM O
(√

TA
)

[03’] O
(
T2/3A2/3) [L, 20’] ?

▶ Importance-weighted estimator (IWE) do not utilize the information of opponents’ actions.

▶ With additional information of opponent’s actions and the knowledge on reward structure
F = { fρ : ρ ∈ Θ}, can we have better performance, theoretically and practically?
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Natural attempt: Mean estimator and Thompson Sampling

▶ With history Ht+1 = (Ht, At, Bt, Rt+1,At ,Bt), assume gaussian prior,

▶ Mean estimator of the full vector by posterior mean µt summarizing history Ht

R̃µ
t+1(a) = clip[0,1](µt(a, Bt)), ∀a ∈ A

▶ Thompson sampling estimator of the full vector by posterior mean µt and variance σt

summarizing Ht

f̃ TS
t+1(a, Bt) | Ht+1 ∼ N(µt(a, Bt), σt(a, Bt)), ∀a ∈ A

and

R̃TS
t+1(a) = clip[0,1]( f̃ TS

t+1(a, Bt)), ∀a ∈ A
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Simple example showing divergence of RM with Mean or TS

▶ Consider a class of matrix game instances where ∆ ∈ (0, 1) is the gap variable

θ =

(
1 1 − ∆

1 − ∆ 1

)
,

▶ Best-response opponent: Bob have all information of the matrix θ and know Alice’s mixed
strategy Xt before choosing its own strategy Yt and select Bt ∼ Yt,

Yt = arg min
y∈∆

yT(θXt),

▶ Assume no observation noise.

Proposition 1 (Divergence).

Alice using Regret Matching with Mean Estimator (Mean-RM) or Thompson Sampling Estimator
(TS-RM) will suffer linear regret.
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Simple example showing divergence of RM with Mean or TS

θ =

(
1 1 − ∆

1 − ∆ 1

)

▶ Observation 1: As long as a pure strategy is used by the Alice, it suffers regret ∆ at that
round because of the best-response opponent.

▶ Observation 2: The best-response strategy for the uniform mixed strategy is also the
uniform strategy.
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Simple example showing divergence of Mean and TS

θ =

(
1 1 − ∆

1 − ∆ 1

)

By symmetry, define the following event,
▶ Event ωt: Alice picks the 2nd row and Bob chooses the 1st column at time t.
▶ Event Ωt: Alice picks the 2nd row and Bob chooses the 1st column for all time t′ ⩽ t.

Proposition 2.

If Alice initialize with uniform strategy,

ℜ(T) ⩾ 2P(ΩT)∆T

If Ωt happens with constant probability for all t ⩾ 1, then Alice suffer linear regret.
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Divergence of Mean-RM and TS-RM

Proposition 3 (Mean-RM).

If Alice initialize with uniform strategy and use Regret Matching with mean estimator
(Mean-RM), for all round t ⩾ 1, P(Ωt) = 0.25.

Proposition 4 (TS-RM).

If Alice initialize with uniform strategy and use Regret Matching with Thompson Sampling
estimator (TS-RM), ∀∆ ∈ (0, 1), ∀σw > 0, ∃c(∆, σw) > 0, for all round t ⩾ 1,

P(Ωt) ⩾ c(∆, σw).

Specifically, when ∆ = 0.1 and σw = 0.1 (used to update posterior algorithmically), we have
c(∆, σw) ≈ 0.54.
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Divergence of Mean-RM and TS-RM

Corollary 1.
As a corollary of proposition 2, proposition 3 and proposition 4, Mean-RM and TS-RM would
suffer linear regret.
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Divergence of Mean-RM

▶ P(w1) = 0.25 by uniform strategy initialization

▶ Conditioned on ω1, following the Mean-RM algorithm:
▶ Each round t = 0, 1, . . .,

– Alice received Rt+1,2nd,1st = 1 − ∆
– Use the mean estimator to construct imagined reward vector R̃µ

t+1 = [0, 1 − ∆]
– and construct the instantaneous and cumulative regret vector

regt+1 = [∆ − 1, 0], Regt+1 = [(0.5 − t − 1)(1 − ∆)︸ ︷︷ ︸
Negative

, 0.5(1 − ∆)]

– By regret matching update rule, Alice’ strategy for next time Xt+1 = [0, 1] is still the pure
strategy of 2nd row. This implies that Bob’s next strategy is still 1st column.

▶ As a result, P(Ωt | w1) = 1, ∀t ⩾ 1, i.e., Alice will always suffer linear regret.
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Divergence of TS-RM

▶ By regret matching update rule,

▶ Conditioned on Ωt, Alice will still use pure strategy of 2nd column if

▶ the 1st entry of cumulative regret calculated by TS estimator ⩽ 0

▶ We show that there exist some constant c > 0 such that P(Ωt) ⩾ c, ∀t ∈ Z+ by iteratively
calculating the conditional probability,

P(Ωt) = P(ω1)P(ω2|Ω1) . . . P(ωt|Ωt−1)

▶ Specifically, when ∆ = 0.1 and σw = 0.1 (used to update posterior algorithmically), we have

c ≈ 0.54
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A simple fix: Optimistic Sampling

▶ Independently sample Mt+1 TS estimators

f̃ TS,j
t+1 (a, Bt) | Ht+1 ∼ N(µt(a, Bt), σt(a, Bt)), ∀j = 1, . . . , Mt+1

▶ and taking the maximum,

f̃ OTS
t+1 (a, Bt) = max

j∈[Mt+1]
f̃ TS,j
t+1 (a, Bt)

▶ Construct the imagined reward vector,

R̃OTS
t+1 (a) = clip[0,1]( f̃ OTS

t+1 (a, Bt)), ∀a ∈ A
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Apply Optimistic Sampling in the Counter example

Figure: Failure ratio for TS-RM and OTS-RM with different problem setups (specified by Delta and
noise variance).
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Why OTS works with larger Mt+1?

▶ Assumed Alice always take the suboptimal action until time t, i.e. Ωt happens,

▶ if Alice want to stop taking the suboptimal action and suffering ∆ regret, Alice has move
from the pure strategy [0, 1] to mixed strategy

▶ by Regret Matching, a sufficient condition for mixed strategy at this situation is to keep
R̃OTS

t+1 (1st) > R̃OTS
t+1 (2nd).

▶ By optimistic sampling, f̃ TS,j
t+1 (1st, 1st) ∼ N(0, 1), j = 1, . . . , M

f̃ TS,j
t+1 (2nd, 1st) ∼ N

(
t

t+σ2
w
(1 − ∆), σ2

w
σ2

w+t

)
, j = 1, . . . , M

(1)

then R̃OTS
t+1 (1st) = max

j∈[M]
f̃ TS,j
t+1 (1st, 1st) and R̃OTS

t+1 (2nd) = max
j∈[M]

f̃ TS,j
t+1 (2nd, 1st).
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Key insight of optimistic sampling: anti-concentration

Lemma 2 (Anti-concentration property of maximum of Gaussian R.V.).

Consider a normal distribution N
(
0, σ2) where σ is a scalar. Let η1, η2, . . . , ηM be M

independent samples from the distribution. Then for any δ > 0

P

(
max
j∈[M]

ηj ⩽
√

2σ2 log(1/δ)

)
⩾ 1 − Mδ.

According to the anti-concentration property,

P(R̃OTS
t+1 (1st) ⩽

t
t + σ2

w
(1 − ∆) +

√
2σ2

w log(M/δ1)

t + σ2
w

) ⩾ 1 − δ1 (2)

Algorithms | Simple fix 40 / 58



The probability of R̃OTS
t+1 (1st) > R̃OTS

t+1 (2nd)

Now, we calculate the probability of

R̃OTS
t+1 (1st) >

t
t + σ2

w
(1 − ∆) +

√
2σ2

w log(M/δ1)

t + σ2
w

Lemma 3.

Consider a normal distribution N
(
0, σ2) where σ is a scalar. Let η1, η2, . . . , ηM be M

independent samples from the distribution. For any w ∈ R+,

P

(
max
j∈[M]

ηj ⩾ w

)
= 1 − [Φ(

w
σ
)]M
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The probability of R̃OTS
t+1 (1st) > R̃OTS

t+1 (2nd)
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General Regret Bound

▶ We introduce an imagined reward vector sequence R̃t+1 ∈ [0, 1]A, where each R̃t+1 is
constructed using history information Ht with algorithmic randomness.

▶ For any a ∈ A, the one-step regret can be decomposed by

E [Rt+1,a,Bt − Rt+1,At ,Bt | θ] = E [ fθ(a, Bt)− fθ(At, Bt) | θ]

= E
[
R̃t+1(a)− R̃t+1(At) | θ

]︸ ︷︷ ︸
(I)

+E
[

fθ(a, Bt)− R̃t+1(a) | θ
]︸ ︷︷ ︸

(I I)

+E
[
R̃t+1(At)− fθ(At, Bt) | θ

]︸ ︷︷ ︸
(I I I)

(3)

▶ Summation of (I) reduces to adversarial regret of Hedge or RM for bounded sequence R̃t+1.
▶ (I I) ⩽ P( fa,Bt ⩾ R̃t+1(a)) ⩽ O(1/

√
T) is small by select proper Mt+1. (Mt+1 = 1,

which is TS, cannot satisfy. One reason we need modified TS.)
▶ (I I I) can be bounded by O(σt(At, Bt)) and further bounded by one-step information gain

I(θ; Rt+1,At ,Bt |Ht) using differential entropy of gaussian distribution.
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I(θ; Rt+1,At ,Bt |Ht) using differential entropy of gaussian distribution.
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Preview of the bounds

▶ Problem-dependent quantity: information gain γT(θ) := I(θ; A0, B0, . . . , AT−1, BT−1)

depends on underlying reward structure.

▶ Define γT(θ,A,B) := min(γT(θ),
√
AB logAB)

Table: Regret bounds comparison.

Feedback Full Bandit Bandit + Actions

Imagined – IWE OTS [Ours]

No-Regret
Hedge O

(√
T logA

)
O
(√

TA logA
)

O
(√

T logA+ γT(θ,A,B)
√

T
)

RM O
(√

TA
)

O
(
T2/3A2/3) O

(√
TA+ γT(θ,A,B)

√
T
)
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Discussion on the bounds

By the results from [Srinivas, TIT09’] which gives the bounds of γT for a range of commonly
used covariance functions: finite dimensional linear, squared exponential and Matern kernels.

Table: Maximum information gain γT.

Kernel Linear Squared exponential Materns (ν > 1)

γT(θ) O(d log T) O((log T)d+1) O(Td(d+1)/(2ν+d(d+1))(log T))

▶ For example, if using squared exponential bounds, the final regret of OTS-Hedge is

O((
√

logA+ log(T)d+1)
√

T),

which has no polynomial dependence on action sizes A×B, similar to full information
setting.

▶ Curse of multi-agent is resolved: |B| is exponential in the number of opponents
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Type of opponents

▶ Self-play (regret minimizing) opponent: algB can be history-dependent randomized
algorithm,

▶ Best-response opponent: algB can access exact information of the mean reward function fθ

and Alice’ mixed strategy πt(·) before sampling Bt,

▶ Stationary opponent: algB always select Bt from a stationary distribution,

▶ Non-stationary opponent: algB select Bt from a changing distribution.
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Random matrix game: Self-play (regret-minimizing) opponent

Figure: Matrix size: 70 × 70. Magnitude advantage of OTS estimator.
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Random matrix game: Best-response opponent

Figure: Matrix size: 70 × 70. Magnitude advantage of OTS estimator.
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Random matrix game: Stationary opponent

Figure: Matrix size: 70 × 70. Magnitude advantage of OTS estimator.
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Random matrix game: non-stationary opponent (Robust bandit)

1. A game matrix θ ∈ R10×5 is generated with each element sampling from N(0.5, 2.0). 2. The
opponent’s actions are drawn from a fixed strategy that randomly changes every 50 rounds. 3.
Each algorithm performs up to 1000 rounds and 100 simulation runs.

return< 0 mean return
IWE-Hedge 19.4% 1.24
IWE-RM 12.6% 1.50

OTS-Hedge 2.5% 1.55
OTS-RM 8.8% 1.55
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Application: radar anti-jamming
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Application: Traffic Routing problem
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Summary

▶ Considered a realistic unknown game setting with applications. (Rarely studied area but
meaningful and increasingly important!)

▶ Algorithmic framework for considered setting: Reduction to full-information algorithm with
any admissable vector estimator of unknown utility function.

▶ Proved naive application of mean estimator and Thompson Sampling(TS) estimator fails in
a carefully constructed class of simple matrices.

▶ Proved the regret upper bound of simply modified OTS combined with full-information
no-regret algorithms. The decomposition of regret in the proof is general.

▶ Superior empirical performance in playing against different type of opponents and in the
real-world applications: radar and traffic problems.
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Future works

▶ In experiments, we observe that the average regret TS-RM/TS-RM+ converge in self-play
setting without optimistic modified. Why?

▶ Dynamic regret given different type of opponents

▶ Extension to Markov game: need a good motivation
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