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Matrix game with known utilities

[Neumann and Morgenstern (44')].

Alice Bob

» Matrix game: Foundation of game theory @ @ @
0 1 1

» Traditional goal: find Nash equilibrium

Programming ; One-shot game.

» Known utilities in advance: Linear @ 1 0 .
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Matrix game with known utilities

» Matrix game: Foundation of game theory
[Neumann and Morgenstern (44')].

» Traditional goal: find Nash equilibrium

» Known utilities in advance: Linear

Programming ; One-shot game.

» Not realistic in many applications.

Motivations
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Utility matrix of Alice fo
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Unknown Game: Matrix game with unknown utilities

P Reality: Outcome of the game revealed
after playing;

b1 by bs
» One-shot game is hopeless. Alice a ) ) ’ Bob
» Reality: Bob may not be truly adversarial,
» Alice can play better than Nash. a2 ? ! ?
\r a3 ? 2 ? AL

Utility matrix of Alice fo
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Unknown Game: Matrix game with unknown utilities

P Reality: Outcome of the game revealed
after playing;

b1 by bs
» One-shot game is hopeless. Alice a , ) , Bob
» Reality: Bob may not be truly adversarial,
» Alice can play better than Nash. a2 ? ! ?
» In repeated play, Alice can hope to learn to \r a3 2 2 2 Al

play well against the particular opponent
(Bob) being faced.

Utility matrix of Alice fo
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Repeated Unkonwn Game with full information feedback

[Freund and Schapire. (99'), Hart and Mas-Colell (00'), Games and Economic Behavior.]
At round ¢, Alice select a1 and observe the column b, which contains the entries other than a;.

bl b2 b3

Alice aq 2 fa (a1; b2 2 Bob

a'2 ? f@(a27b2 ’?

a’3 ? f@(a3ab2 ?
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Repeated Unkonwn Game with bandit information feedback

Our practical setup: the only feedback at round ¢ is Noisy bandit feedback + Opponent’s action.

Noise W comes from environment’s random effect.

Alice ai

a2

as

Motivations

b1 b2 bs
? fo(a1,b2) + W] ?
? ? ?
? ? ?

Utility matrix of Alice fo
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Applictions

» Applications in Signal Processing: e.g. Radar Anti-Jamming

» Applications in Transportation: e.g. Traffic Routing
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Application in Signals: Radar Anti-Jamming

» Scenario: Radar aims to detect the target with sequence of signals (repeated game playing)
while jammer aims to prevent.

» Action set: frequencies {fo, f1,..., fN}-

» Utility of Radar: the detection probability on the target.

» Environment randomness: channel and system noise.

Radar
o Jammer
Radar transmits signal

—_—

B
Jammer transmits signal
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Application in Signals: Radar Anti-Jamming

Feedback for Radar:

1. Radar receives echo signal + jamming signal
2. Opponent’s action: Frequency of jamming signal extracted from received signals (e.g. FFT)

3. Noisy bandit feedback: Utility can be estimated from received signals

Jammer

Radar
Radar transmits signal

—_—

Radar receives signal

< <
<

<
Jammer transmits signal
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Application in Transportation: Traffic Routing

Simplified scenario: every morning 7:00 in August (repeated games), Alice and Bob choose the
routes and start to deliver fix unit of products back and forth from fixed origin to destination.

Destination of Alice

(0)
< o

Destination of Bob

Origin of Alice
e,

Origin of Bob

N
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Application in Transportation: Traffic Routing

Action set of Alice: {Route 1, Route 2, Route 3}.

Destination of Alice

o

Destination of Bob

Route 1

Origin of Alice

Route 2
Origin of Bob
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Application in Transportation: Traffic Routing

» Day 1: Alice selects route 2 and bob selects the black route,

» Feedback: incurred total travel time during the day (Noisy bandit feedback) and get
informed of bob’s chosen route (Opponent’s action)

» Because of the shared edge between Alice and Bob's routes, the incurred travel time is long.

Destination of Alice

N

Shared edges

o)
Destination of Bob

Origin of Alice

'&‘
Route 2
Origin of Bob
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Application in Transportation: Traffic Routing

» Day 2: Alice learns from day 1 and selects route 1, and Bob select the black route.

» Feedback: incurred total travel time during the day (Noisy bandit feedback) and get
informed of bob’s chosen route (Opponent’s action)

» Alice suffer less time because of no shared edge in day 2.

Destination of Alice

N

Des#§jnation of Bob

Route 1
Origin of Alice

'&‘
Origin of Bob
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Summary and formulation

» Formal protocol: At each round ¢ in the repeated game, Alice selects A; and Bob selects By;

Then, Alice received Ry;1 4, , and observe B; ... (next round)

Motivations

Round t Notation Radar Traffic

Action At c A Frequency Routes

Others’ action Bt B Frequency Routes

Bandit feedback for Alice Rt+1 ,A¢, By Probability of detection Incurred travel time
Additional ob.servatlons for Bt Jammer’s freq_uency_ extracted Other agent’ selected routes
Alice from received signals
T-1
. — Max Probability of detection in . I
Alice’s Objective ]E[RH-I,Ae,Bt] many roun):is of game Min Total travel time in a month

t=0
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Relation to existing problem setups and popular algorithms

Setup: Full information game

» Relation: full column vector instead of just one entry.

» Famous algorithms: Multiplicative-weights [Littlestone and Warmuth, 94'] / Hedge [Freund
and Schapire, 97', 99'], Regret Matching [Hart and Mas-Colell, 00']

» Drawback of the setup: Feedback not realistic in applications.

Motivations 15/58



Relation to existing problem setups and popular algorithms

Setup: Adversarial bandit

» Relation: if opponent is fully adversarial and we cannot observe opponent'’s action.

» Famous algorithm: EXP3 [Auer, Cesa-Bianchi, Freund, Schapire. 03’ SIAM J. Comput.]
and its variants [Bubeck, Lee, Lee, Eldan. 17" STO(]

» Drawback of the setup: Ignore the fact the underlying utility function is static during the
game and may have structure among actions.

Motivations 16 /58



Relation to existing problem setups and popular algorithms

Setup: Stochastic bandit

» Relation: if opponent is stationary and we cannot observe opponent’s action.

» Famous algorithm: Thompson sampling (TS) [Thomson, 33'; Russo, Van Roy, Kazerouni,
Osband and Wen, 18’ Foundations and Trends]

» Drawback of the setup: Opponent is usually smarter than just playing stationarily.

Motivations 17 /58
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Quick recap and abstraction: Player-Environment-Player Interface

» For a environment instance indexed by 0,
At each time t =0,1,.. .,

v

— Alice executes an action Ay; Simultaneously, Bob executes an action By; After execution,
— Alice observes the reward,
(1) Full feedback (not realistic):

Rit1,08 = fo(a,Bt), Vaec A
(2) Noisy bandit feedback (realistic):

Rii1,4,8, = fo(At, Bt) + Wip1,a,8,

— (Optional and realistic) Meanwhile, Alice can observe Bob's selected action B;.

» Research interest: Noisy bandit feedback + Observe Opponent’s action.
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No-regret algorithms for full-information feedback

Algorithm No Regret for full-information feedback

1: Initialize A-dim probability vector X;

2: forround t=1,2,...,T do

3:  Sample action A; from distribution Py, according to X;,

4:  Observe full-information feedback fy(a, By) for all a € A

5. Update: X1 = g¢(Xt, (fo(a, Bt))aea) with no-regret update g;
6: end for

Two no-regret update algorithm can be applied to this scenario: (require fy(a,b) bounded)
» Hedge (97"): Xi1140 ¢ Xiaexp(nifo(a, By)) foralla € A.
» Regret Matching (00'): see next page.
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Regret Matching in full information feedback

> instantaneous regret vector reg; | € RA
l‘egtJrl( ) fg a, Bt ng a, Bt Xtu

» Cumulative regret vector Regsi1

Regts1(a Z reg. (4

» Regret Matching update rule: If ), Regt"fH (a) = 0, choose arbitrary probability vector X,
(usually we choose uniform dist.); otherwise, Va € A,

Regtil(a)
Y Regfy(a)

Xiv1a = where x™ := max(x,0).
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History-dependent Randomized Algorithm for bandit feedack and

oppnent’s action observation

» Alice's experience through time t is encoded by a history
H; = (Ao, Bo,R1,49,8y: - - -+ At—1,Bi—1,Re.a, 1,8, ;) -
» An algorithm (randomized policy) employed by Alice is a sequence of deterministic functions,
% = (7Tt)teN,

where 71;(H;) specifies a probability distribution over the action set A4,

> Alice select the action according to A; ~ 71;(H;y):
]P(At c - | 7Tt) = P(At (S | Ht) = 7'[1}(')
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Objective function from Alice’'s perspective

» We also allow Bob use aZgB to select his actions By, By, . ..

» Alice's objective is to maximize expected reward over some long duration T:

T-1

Z E [Rt+1,At,Bt | 6]
t=0

» We compete with the best action in hindsight A* = max,c 4 Zf;ol E [R¢41,0,8, | 0]
» Naturally, our performance metric is (Adversarial) Regret:
T-1

R(T, 78, algB,0) = max Y E [Riy1,08 — Rit1,a,8 | 0]
=0
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No-regret Learning in Game from Alice’s perspective

> We say an algorithm 77,4 is No-Regret, if for any possible algorithm algB used by Bob,

Alice can suffer only sublinear regret, i.e.

R* (T, 78, 6) — sup R(T, 7%, algB,6) = o(T),
algB

» That is,
* alg
lim R*(T, '8,0) _
T—oo T

Algorithms 24 /58



Estimation with history and then No-regret update in our setting

Algorithm Estimate-then-NoRegret for bandit feedback

1: Initialize X3

2: forround t=1,2,...,T do

3:  Sample action A; ~ Py,

4:  Observe opponent’s action B; and noisy bandit feedback Ry 4, 5,
5. Update historical information H;,1 = (Hy, Ay, B, Ryyq) for player i
6: Construct: Ry = E(H,1) € R4 by estimation function E,
7. Update: Xy = gi(Xs, Rey1)
8: end for

Algorithms 25/58



The price of bandit information compared with full information

Table: Regret bounds comparison.

Feedback Full Bandit Bandit + Actions
Reward vector direct from feedback IWE ?
Hedge O(\/TlogA) [97',99] O(\/TAlogA) [00] ?

No-Regret Update
RM O(VTA) [03] O(T¥3A42/3) [L, 207 ?

» Importance-weighted estimator (IWE) do not utilize the information of opponents’ actions.

» With additional information of opponent’s actions and the knowledge on reward structure
F = {fp : p € ®}, can we have better performance, theoretically and practically?

Algorithms 26 /58



Outline

Algorithms

Failure example

Algorithms | Failure example 27 /58



Natural attempt: Mean estimator and Thompson Sampling

» With history Hy11 = (H;, At, Bt, Ry41,4,,8,), assume gaussian prior,

» Mean estimator of the full vector by posterior mean y; summarizing history H;

Rl (a) = clipg g (pe(a, B)), Va € A

» Thompson sampling estimator of the full vector by posterior mean y; and variance o;
summarizing H;

f21(a,B) | Hepq ~ N(pe(a, Be), 01(a, By)),Va € A

and

RtTfl (a) = clipg ) (ﬁTfl(“’ Bt)), Vae A

Algorithms | Failure example 28 /58



Simple example showing divergence of RM with Mean or TS

» Consider a class of matrix game instances where A € (0,1) is the gap variable

0 — 1 1-A ’
1-A 1

» Best-response opponent: Bob have all information of the matrix 6 and know Alice's mixed

strategy X; before choosing its own strategy Y; and select By ~ Y,

Y; = arg rninyT(GXt),
yeA
» Assume no observation noise.
Proposition 1 (Divergence).

Alice using Regret Matching with Mean Estimator (Mean-RM) or Thompson Sampling Estimator
(TS-RM) will suffer linear regret.
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Simple example showing divergence of RM with Mean or TS

0 — 1 1-A
1-A 1

» Observation 1: As long as a pure strategy is used by the Alice, it suffers regret A at that
round because of the best-response opponent.

» Observation 2: The best-response strategy for the uniform mixed strategy is also the
uniform strategy.
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Simple example showing divergence of Mean and TS

0 — 1 1-A
1-A 1

By symmetry, define the following event,
» Event w;: Alice picks the 2nd row and Bob chooses the 1st column at time ¢.
» Event );: Alice picks the 2nd row and Bob chooses the 1st column for all time t’ < t.

Proposition 2.

If Alice initialize with uniform strategy,
R(T) > 2P(Qr)AT

If Q) happens with constant probability for all t > 1, then Alice suffer linear regret.

Algorithms | Failure example 31/58



Divergence of Mean-RM and TS-RM

Proposition 3 (Mean-RM).

If Alice initialize with uniform strategy and use Regret Matching with mean estimator
(Mean-RM), for all round t > 1, P(Q);) = 0.25.

Algorithms |  Failure example
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Divergence of Mean-RM and TS-RM

Proposition 3 (Mean-RM).

If Alice initialize with uniform strategy and use Regret Matching with mean estimator
(Mean-RM), for all round t > 1, IP(Q);) = 0.25.

Proposition 4 (TS-RM).

If Alice initialize with uniform strategy and use Regret Matching with Thompson Sampling
estimator (TS-RM), VA € (0,1),Yoy, > 0,3c(A, o) > 0, for all round t > 1,

P(Q) = c(A, o).

Specifically, when A = 0.1 and 0, = 0.1 (used to update posterior algorithmically), we have
c(A, o) =~ 0.54.

v
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Divergence of Mean-RM and TS-RM

Corollary 1.

As a corollary of proposition 2, proposition 3 and proposition 4, Mean-RM and TS-RM would
suffer linear regret.

Algorithms | Failure example 33/58



Divergence of Mean-RM

» IP(w;) = 0.25 by uniform strategy initialization

» Conditioned on w1, following the Mean-RM algorithm:
» Each round t =0,1,...,

— Alice received Ry qopd15¢ =1 — A

Algorithms | Failure example 34 /58



Divergence of Mean-RM

» IP(w;) = 0.25 by uniform strategy initialization
» Conditioned on w1, following the Mean-RM algorithm:
» Each round t =0,1,...,

— Alice received Ry qopd15¢ =1 — A

— Use the mean estimator to construct imagined reward vector Rfﬂ =10, 1—A]

— and construct the instantaneous and cumulative regret vector

reg, ., = [A—1, 0], Regiiq=[(05—t—1)(1—A),05(1—A)]

Negative
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Divergence of Mean-RM

» IP(w;) = 0.25 by uniform strategy initialization

» Conditioned on w1, following the Mean-RM algorithm:
» Each round t =0,1,...,

— Alice received Ry qopd15¢ =1 — A

Use the mean estimator to construct imagined reward vector Rfﬂ =0, 1—A]
— and construct the instantaneous and cumulative regret vector

reg, . = [A—1,0], Reg1=[05—-t-1)(1-A)05(1—A)]

Negative

By regret matching update rule, Alice’ strategy for next time X;.q = [0,1] is still the pure
strategy of 2nd row. This implies that Bob's next strategy is still 1st column.
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Divergence of Mean-RM

» IP(w;) = 0.25 by uniform strategy initialization

» Conditioned on w1, following the Mean-RM algorithm:
» Each round t =0,1,...,

— Alice received Ry qopd15¢ =1 — A

Use the mean estimator to construct imagined reward vector Rfﬂ =0, 1—A]
— and construct the instantaneous and cumulative regret vector

reg, . = [A—1,0], Reg1=[05—-t-1)(1-A)05(1—A)]

Negative

By regret matching update rule, Alice’ strategy for next time X;.q = [0,1] is still the pure
strategy of 2nd row. This implies that Bob's next strategy is still 1st column.

> As a result, P(Q |wy) = 1,Vt > 1, i.e., Alice will always suffer linear regret.

Algorithms | Failure example 34 /58



Divergence of TS-RM

» By regret matching update rule,
» Conditioned on ), Alice will still use pure strategy of 2nd column if
» the 1st entry of cumulative regret calculated by TS estimator < 0

» We show that there exist some constant ¢ > 0 such that P(Q)) > ¢, Vt € Z by iteratively
calculating the conditional probability,

P(Q) = P(w1)P(w2|Q1) ... P(wi] Q1)
» Specifically, when A = 0.1 and ¢y, = 0.1 (used to update posterior algorithmically), we have

c~ 054

Algorithms | Failure example 35/58
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A simple fix: Optimistic Sampling

» Independently sample M; 1 TS estimators
=TS,j .
fori (a,Bt) | Hepr ~ N(pe(a, By),01(a, Be)),Vj =1,..., My 11
» and taking the maximum,
FOTS (g, B,) = max f. " (a,By)
ft+1 j€Mi 1] ft+1

» Construct the imagined reward vector,

ROTS (a) = clipyy ) (f75(a, Br)), Va € A

Algorithms | Simple fix 37/58



Figure: Failure ratio for TS-RM and OTS-RM with different problem setups (specified by Delta and

Noise Variance

1.0

Apply Optimistic Sampling in the Counter example

0.01

0.1

10.0

0.1

noise variance).

Algorithms

Simple fix

0.3

0.5
Delta

0.7

No Optimistic Sampling (M =1)

0.9

0.01

0.1

1.0

10.0

Optimistic Sampling (M =4)

0.1

03

05
Delta

0.7

0.9

-0.2

-0.0
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Why OTS works with larger M;.1?

» Assumed Alice always take the suboptimal action until time ¢, i.e. (); happens,

» if Alice want to stop taking the suboptimal action and suffering A regret, Alice has move
from the pure strategy [0, 1] to mixed strategy

» by Regret Matching, a sufficient condition for mixed strategy at this situation is to keep
ROTS (1st) > ROTS (2nd).

» By optimistic sampling,

Flo (st 1st) ~ N(0,1), j=1,...,M
FEE @nd sty ~ N (5 (1-8), i ) i=1..M

t+o2 o2+t

then ROTS (1st) = max f.-/ (1st, 1st) and ROTS (2nd) = max f.> (2nd, 1st).
t+1 pAvEeRe! t+1 v
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Key insight of optimistic sampling: anti-concentration

Lemma 2 (Anti-concentration property of maximum of Gaussian R.V.).

Consider a normal distribution N (O, 02) where 0 is a scalar. Let 11,1,...,pm be M
independent samples from the distribution. Then for any § > 0

P | max7; < 202log(1/6) | = 1— Mé.
jelM]

According to the anti-concentration property,

2
t 5 (1 _ A) + 2010 log(z\f/(sl)
+ 0%, t+ 0%

IP(RPTP (1st) < ; y=1-46 (2)
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The probability of ROT5(1st) > ROLS (2nd)

t+1 t41
Now, we calculate the probability of
. t 202 log(M/61)
ROTS(1st) > —— (1 — A) + | 202800
t+1(s)>t+0}%( )+ t—I—O'Z%

Lemma 3.
Consider a normal distribution N (O, (72) where 0 is a scalar. Let 11,12,...,1p be M
independent samples from the distribution. For any w € Ry,

w

)M

j€M]

P (maxm}w) =1—[P(
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The probability of R2T? (1st) > ROLS (2nd)

Prob

M=10
M=20
= M=30
M=40

. Round
Algorithms |  Simple fix G 42 /58
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General Regret Bound

We introduce an imagined reward vector sequence Ry, € [O,l]A, where each R, is
constructed using history information H; with algorithmic randomness.
For any a € A, the one-step regret can be decomposed by

E [Ri1 1,08, — Riy1,4,,8, | 0] = E [fo(a,Bt) — fo(At, Bt) | 6]

=E [Ry+1(a) = R1(Ar) | 0] +E [fo(a, Bt) — Rer1(a) | 0] +E [Rs1(Ar) — fo(Ar Br) | 6]
(1) (11)

(I11)

(3)

Performance bounds

44 /58



General Regret Bound

We introduce an imagined reward vector sequence Ry, € [O,l]A, where each R, is
constructed using history information H; with algorithmic randomness.
For any a € A, the one-step regret can be decomposed by

E [Ri1 1,08, — Riy1,4,,8, | 0] = E [fo(a,Bt) — fo(At, Bt) | 6]

=E [Ry+1(a) = R1(Ar) | 0] +E [fo(a, Bt) — Rer1(a) | 0] +E [Rs1(Ar) — fo(Ar Br) | 6]
(1) (11)

(I11)

(3)

» Summation of (I) reduces to adversarial regret of Hedge or RM for bounded sequence R; 1.
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General Regret Bound

We introduce an imagined reward vector sequence Ry, € [O,l]A, where each R, is
constructed using history information H; with algorithmic randomness.
For any a € A, the one-step regret can be decomposed by

E [Ri1 1,08, — Riy1,4,,8, | 0] = E [fo(a,Bt) — fo(At, Bt) | 6]

=E [Ry+1(a) = R1(Ar) | 0] +E [fo(a, Bt) — Rer1(a) | 0] +E [Rs1(Ar) — fo(Ar Br) | 6]
(1) (11)

(I11)

(3)

» Summation of (I) reduces to adversarial regret of Hedge or RM for bounded sequence R; 1.
> (I1) < P(fup, = Rip1(a)) < O(1/+/T) is small by select proper My 1. (Myiq = 1,
which is TS, cannot satisfy. One reason we need modified TS.)
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General Regret Bound

We introduce an imagined reward vector sequence Ry, € [O,l]A, where each R, is
constructed using history information H; with algorithmic randomness.
For any a € A, the one-step regret can be decomposed by

E [Ri1 1,08, — Riy1,4,,8, | 0] = E [fo(a,Bt) — fo(At, Bt) | 6]

=E [Ry+1(a) = R1(Ar) | 0] +E [fo(a, Bt) — Rer1(a) | 0] +E [Rs1(Ar) — fo(Ar Br) | 6]
(1) (11)

(I11)

(3)

» Summation of (I) reduces to adversarial regret of Hedge or RM for bounded sequence R; 1.
> (I1) < P(fup, = Rip1(a)) < O(1/+/T) is small by select proper My 1. (Myiq = 1,
which is TS, cannot satisfy. One reason we need modified TS.)

» (III) can be bounded by O(o¢(A¢, Bt)) and further bounded by one-step information gain
1(6; Ry41,4,,8,|Ht) using differential entropy of gaussian distribution.

Performance bounds
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Preview of the bounds

» Problem-dependent quantity: information gain y7(0) := I(6; Ao, By, ..., Ar_1,Br_1)
depends on underlying reward structure.

» Define v7(6, A, B) := min(yr(6), \/ABlog AB)

Table: Regret bounds comparison.

Feedback Full Bandit Bandit + Actions

Imagined - IWE OTS [Ours]
Hedge O(,/TlogA) O(y/TAlogA) O(y/TlogA+~r(6,A B)VT)
RM O(VTA) O(T?/3A%/3) O(VTA+1(6, A, B)VT)

No-Regret

Performance bounds 45 /58



Discussion on the bounds

By the results from [Srinivas, TIT09'] which gives the bounds of 1 for a range of commonly
used covariance functions: finite dimensional linear, squared exponential and Matern kernels.

Table: Maximum information gain 7.

Kernel Linear Squared exponential Materns (v > 1)

yr(0) O(dlogT) O((log T)%+1) O(Td(dﬂ)/@"*d(d“)) (logT))

» For example, if using squared exponential bounds, the final regret of OTS-Hedge is

O((/log A+ log(T)*)VT),

which has no polynomial dependence on action sizes A x B3, similar to full information
setting.
» Curse of multi-agent is resolved: |B| is exponential in the number of opponents
Performance bounds 46 /58
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Type of opponents

» Self-play (regret minimizing) opponent: algB can be history-dependent randomized
algorithm,

> Best-response opponent: alg? can access exact information of the mean reward function fg
and Alice’ mixed strategy 71;(-) before sampling By,

» Stationary opponent: alg® always select By from a stationary distribution,

» Non-stationary opponent: alg? select By from a changing distribution.

Empirical investigations 48 /58



Random matrix game

Average Regret

10t
—»— |WE-Hedge
—e— UCB-Hedge
10° —@— OTS-Hedge
—— Hedge(full)
107t
1072
103
1074, ol 2 3 4 05 6
10 10 10 10 10 10 10

Rounds

: Self-play (regret-minimizing) opponent

Average Regret

—»— IWE-RM
—e— UCB-RM
—&— OTS-RM
—#— RM(full)

10° 10 10° 108 107
Rounds

Figure: Matrix size: 70 x 70. Magnitude advantage of OTS estimator.

Empirical investigations
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Random matrix game: Best-response opponent

Average Regret

10!
—»— |IWE-Hedge
—e— UCB-Hedge
100 —#— OTS-Hedge
—#—Hedge(full)
107!
1072
1073
10755 1 2 3 7 5 6 7
10 10 10 10 10 10 10 10

Rounds

Average Regret

10!
—»— IWE-RM
—o— UCB-RM
100 —&— OTS-RM
—#— RM(full)
10-1-
1072,
1073
10750 1 2 3 Z 5 3 7
10 10 10 10 10 10 10 10

Rounds

Figure: Matrix size: 70 x 70. Magnitude advantage of OTS estimator.

Empirical investigations
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Random matrix game: Stationary opponent

Average Regret Average Regret

10t 10t
—»— |WE-Hedge —»— IWE-RM
—e— UCB-Hedge —o— UCB-RM
100 —#— OTS-Hedge 10°- —&— OTS-RM
—#— Hedge(full) —#— RM(full)
- ol =
107! 10-1-
1072 1072
1073 1073
10755 T 2 3 a 5 3 7 10750 T 2 3 7 5 3 7
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Rounds Rounds

Figure: Matrix size: 70 x 70. Magnitude advantage of OTS estimator.
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Random matrix game: non-stationary opponent (Robust bandit)

1. A game matrix 8 € R19%5 is generated with each element sampling from N(0.5,2.0). 2. The
opponent's actions are drawn from a fixed strategy that randomly changes every 50 rounds. 3.
Each algorithm performs up to 1000 rounds and 100 simulation runs.

IWE-Hedge

IWE-RM OTS-Hedge

Count

Count
Count
Count

-4 -2 0 2 4 -4 =2 0 2 4
Rewards

-4 2 0 2 4 -4 -2 0 2
Rewards Rewards Rewards

return< 0 mean return

IWE-Hedge  19.4% 1.24
IWE-RM 12.6% 1.50
OTS-Hedge 2.5% 1.55
OTS-RM 8.8% 1.55
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Application: radar anti-jamming

100 Average Regret for Radar 10t Average Regret for Radar
—»— |WE-Hedge ~»— |WE-RM
—e— UCB-Hedge —e— UCB-RM
10° —&— OTS-Hedge 10° —&— OTS-RM
—u— Hedge(full) —#— RM(full)
© ©
-1 -1
g10 510
o o
ﬂ) ﬂ)
8 8
© 1072 © 1072
2 2
1073 1073
10750 o1 02 03 04 05 06 7 10750 o1 02 03 04 05 06 07
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Rounds Rounds
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Application: Traffic Routing problem

Average Regret Average Congestion
1600 By ore ~+— IWE-Hedge | 16
I8 <> IWE-RM
1400 UCB-Hedge 14
1200 * UCB-RM
—e— OTS-Hedge

. - OTS-RM 12
800 10
600 s
400

6
200

hd H e
| | | | 4 : ! ! !
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
Average final Regret Average final Congestion

16
1600
1400

e
1200
1000
800
600
400
200
o
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Number of learning agents Number of learning agents
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Concluding remarks
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Summary

» Considered a realistic unknown game setting with applications. (Rarely studied area but
meaningful and increasingly important!)

» Algorithmic framework for considered setting: Reduction to full-information algorithm with
any admissable vector estimator of unknown utility function.

» Proved naive application of mean estimator and Thompson Sampling(TS) estimator fails in
a carefully constructed class of simple matrices.

» Proved the regret upper bound of simply modified OTS combined with full-information
no-regret algorithms. The decomposition of regret in the proof is general.

» Superior empirical performance in playing against different type of opponents and in the
real-world applications: radar and traffic problems.
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Future works

» In experiments, we observe that the average regret TS-RM/TS-RM+ converge in self-play
setting without optimistic modified. Why?

» Dynamic regret given different type of opponents

» Extension to Markov game: need a good motivation
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