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Sequential decision-making

Figure: An Agent (online decision algorithm) interacts with the environment (system).

▶ Adaptation: At time t, the agent extracts information from history data
Dt−1 = (x1, y1, . . . , xt−1, yt−1). E.g., estimate model θ̂ for unknown system.

▶ Decision: Then, the agent selects action xt accordingly and observes the outcome yt.
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Sequential decision-making

Figure: An Agent (online decision algorithm) interacts with the environment (system).

▶ Goal: Select actions (xt)t⩾1 to maximize total expected future reward E[∑t r(yt))].

Exploration-Exploitation tradeoff.

May require balancing long term & immediate rewards.
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A simple setup: Bernoulli bandits

(a) Action 1: θ∗1 = 0.6 (b) Action 2: θ∗2 = 0.4 (c) Action 3: θ∗3 = 0.7

▶ 3 actions with mean rewards θ∗ = {θ∗1 = 0.6, θ∗2 = 0.4, θ∗3 = 0.7}, unknown to the Agent but fixed.

▶ Each time t, an action xt = k is selected and the observation

yt ∼ Bernoulli(θ∗k )

is revealed, resulting the reward rt = yt.
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Source of uncertainty: unknown environments and insufficient data

▶ θ∗ = {θ∗1 = 0.6, θ∗2 = 0.4, θ∗3 = 0.7} unknown.

▶ The agent begin with an independent uniform prior belief
over each θ∗k .

▶ The agent’s beliefs in any given time period about these
mean rewards can be expressed in terms of posterior
distributions.

– Posterior ∝ Prior × Data likelihoods
– More Data ⇒ Posterior concentrates!
– Less Data ⇒ Posterior spreads!

Epistemic Uncertainty due to insufficient data.

Figure: Posterior p.d.f. over mean rewards
after the agent tries actions 1 and 2 one
thousand times each, action 3 three times,
receives cumulative rewards of 600, 400, and
1.
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Why agent needs to track the degree of uncertainty - Greed is no good

▶ Greedy algorithm (maximize expected mean reward with
current belief) will always select action 1.

▶ Under current belief: Reasonable to avoid action 2, since
it is extremely unlikely θ∗2 > θ∗1 .

▶ Because of high uncertainty in θ∗3 , there is some chance
θ∗3 > θ∗1 . In the long run, the agent should try action 3.

Greedy algorithm fails to account for uncertainty information
in θ∗3 , causing suboptimal decision.

Figure: Posterior p.d.f. over mean rewards
after the agent tries actions 1 and 2 one
thousand times each, action 3 three times,
receives cumulative rewards of 600, 400, and
1. Ground truth
{θ∗1 = 0.6, θ∗2 = 0.4, θ∗3 = 0.7}.
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Why agent needs to track the degree of uncertainty - Thompson sampling

Algorithm: Thompson sampling (TS)

▶ Given prior distribution p0(θ
∗) over model θ∗. Set initial

dataset D0 = ∅.
▶ For t = 1, . . . , T,

– Sample θ̃t ∼ p(θ∗ | Dt−1) from posterior
– Select xt = arg max

x∈A
E[r(yt) | xt = x, θ∗ = θ̃t] and

observe yt and rt = r(yt)

– Update the history dataset Dt = Dt−1 ∪ {(xt, yt)}

▶ TS would sample actions 1, 2, or 3, with prob. ≈ 0.82, 0,
and 0.18, respectively.

▶ TS explores θ∗3 to solve its uncertainty and finally
identifies the optimal action

Figure: Posterior p.d.f. over mean rewards
after the agent tries actions 1 and 2 one
thousand times each, action 3 three times,
receives cumulative rewards of 600, 400, and
1. Ground truth
{θ∗1 = 0.6, θ∗2 = 0.4, θ∗3 = 0.7}.
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Why agent needs to track the degree of uncertainty

Definition 1 (Performance metric: Regret).

Regret(T) =
T

∑
t=1

E[max
x

E[r(y) | x, θ∗]− r(yt)]

In previous bernoulli bandit example, θ∗1 = 0.6, θ∗2 = 0.4, θ∗3 = 0.7 and

max
x

E[r(y) | x, θ∗] = θ∗3 .

Therefore, Regret(T) = Tθ∗3 − E[∑T
t=1 r(yt)].
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Why agent needs to track the degree of uncertainty - Thompson sampling

Algorithm: Thompson sampling (TS)

▶ Given prior distribution p0(θ
∗) over model θ∗. Set initial dataset D0 = ∅.

▶ For t = 1, . . . , T,
– Sample θ̃t ∼ p(θ∗ | Dt−1) from posterior
– Select xt = arg max

x∈A
E[r(yt) | xt = x, θ∗ = θ̃t] and observe yt and rt = r(yt)

– Update the history dataset Dt = Dt−1 ∪ {(xt, yt)}

Theorem 1 (Thompson sampling for K-armed bandit [RVRK+18]).

K actions with mean parameter {θ∗1 , . . . , θ∗K}, and when played, any action yields the observation
yt ∼ Bernoulli(θ∗k ) and resulting the reward rt = r(yt). The regret lower bound is Ω(

√
KT). Thompson

sampling achieves near-optimal regret up to a log K factor,

Regret(T) = O(
√

KT log K).
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How to track the degree of uncertainty? Bayesian inference

▶ Given data DT = {(xt, yt), t = 1, . . . , T}, compute the posterior of θ∗ via the Bayes rule

p(θ∗ | DT) ∝ p(DT | θ∗)p0(θ
∗)

Example: Beta-Bernoulli model

▶ Prior: θ∗ ∈ RK each
θk ∼ p0 : Beta(αk, βk)

▶ yt ∼ Bernoulli(θxt )

▶ Posterior over θk | DT still Beta with
parameters(

αk +
T

∑
t=1

ytIxt=k, βk +
T

∑
t=1

(1 − yt)Ixt=k

)

Example: Linear-Gaussian model

▶ Prior: θ∗ ∈ Rd ∼ p0 : N(µ0, Σ0)

▶ yt = ⟨θ∗, xt⟩+ ω∗
t and ω∗

t ∼ N(0, σ2)

▶ Gaussian Posterior θ∗ | DT ∼ N(µT , ΣT)

ΣT =

(
1

σ2

T

∑
t=1

xtx⊤t + Σ−1
0

)−1

,

µT = ΣT

(
1

σ2

T

∑
t=1

xtyt + Σ−1
0 µ0

)
.
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Conjugacy allows for incremental update on Bayesian posterior

▶ Update Σt by Sherman-Morrison formula

Σt =

(
Σ−1

t−1 +
1

σ2 xtx⊤t

)−1
= Σt−1 −

Σt−1xtx⊤t Σt−1

σ2 + x⊤t Σt−1xt

▶ (Incrementally) Update pt := Σ−1
t µt with

Σ−1
t µt︸ ︷︷ ︸
pt

= Σ−1
t−1µt−1︸ ︷︷ ︸

pt−1

+
1

σ2 xtyt (1)

▶ Compute µt

µt = Σt pt
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Research question

Fact:

Without conjugacy properties, exact Bayesian posterior inference is intractable.

Question:

How to perform posterior sampling without using conjugacy?
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Sampling through optimization with perturbed history

▶ For a history dataset Dt = {(xs, ys)t
s=1}, perturb with algorithmic noise to generate a

Perturbed history D̃t = { θ̃0 ∼ N(µ0, Σ0) , (xs, ys + σ zs ); zs ∼ N(0, 1) , s = 1, . . . , t}

▶ Randomize Least Square (RLS) via Perturbed History (PH) [OAC18, OVRRW19]

θt = arg min
θ

ℓ(θ; D̃t) :=
1

σ2

t

∑
s=1

( gθ(xs) − ys − σzs)
2 + θ⊤Σ−1

0 θ (2)

where gθ(x) could be a generic nonlinear function.

Significance of Equation (2)

– Sampling through a purely computational perspective.

– No explicit posterior inference.

– No use of conjugacy properties.
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Understanding RLS-PH under fixed history

Justification of Equation (2): posterior sampling

If the fixed history dataset Dt is generated from a Linear-Gaussian model w. prior θ∗ ∼ N(µ0, Σ0) and

gθ(x) = ⟨θ + θ̃0, x⟩ , then the optimal solution of Equation (2) is a posterior sample

θ̃t := ( θt + θ̃0)
i.i.d.∼ θ∗ | Dt.

θ̃t := θt + θ̃0 = Σt

(
1

σ2

t

∑
s=1

xs(ys + σzs) + Σ−1
0 θ̃0

)
s.t.

E[θ̃t | Dt] = Σt

 1
σ2

t

∑
s=1

xs(ys + σ E[zs | Dt]︸ ︷︷ ︸
=0

) + Σ−1
0 E[θ̃0 | Dt]︸ ︷︷ ︸

=0

 = µt = E[θ∗ | Dt],

Cov[θ̃t | Dt] = Σt

 1
σ2

t

∑
s=1

xs E[zsz⊤s | Dt]︸ ︷︷ ︸
=I

x⊤s + Σ−1
0 Cov[θ̃0 | Dt]︸ ︷︷ ︸

=Σ0

Σ−1
0

 Σt = Σt = Cov[θ∗ | Dt].
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A hypothetical algorithm for sequential-decision making without conjugacy

Incremental RLS for linear bandit w. prior: θ∗ ∈ Rd ∼ p0 : N(µ0, Σ0).

▶ Initialize prior perturbation θ̃0 ∼ N(µ0, Σ0)

▶ For t = 1, . . . , T do
— Decision: Select xt = arg max

x∈A
⟨x, θ̃t−1 ⟩ and observe yt = ⟨θ∗, xt⟩+ ω∗

t

where ω∗
t ∼ N(0, σ2) is the environmental noise

— Adaptation: Incrementally update model according to recursive LS

θ̃t = Σt

Σ−1
t−1 θ̃t−1 +

yt + σzt

σ2 xt

 (3)

where each zt ∼ N(0, 1) is an independent perturbation at each step t.

▶ Starting from this page, we use boldface xt to emphasize it is a history-dependent R.V. .

▶ Dt = {(xs, ys)t
s=1} is a adaptively sampled dataset.
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Does incremental RLS work for sequential-decision making?
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Linear Gaussian Model (Bayes MOD, Russo and Van Roy, 2018) - n_arms: 10000 - n_features: 50
TS - Conjugacy
IS:PMCoord_Gaussian

▶ Bayesian regret (avg 200 expes)
in Linear-Gaussian bandit

▶ ✗ Incremental RLS (Blue)
suffer linear regret (failure).

▶ ✓ Thompson sampling (Black)
uses conjugacy for posterior
update and then generates a
sample from posterior.
Sublinear regret.
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Why incremenal RLS does not work for sequential decision making?

θ̃0

x1

z1

x2

z2

x3

z3

. . .

. . .

xt

zt

xt+1

Time t = 1 Time t = 2 Time t = 3 Time t Time t + 1

Sequential Dependence due to incremental update alongside sequential decision-making.

▶ Posterior mean not matching due to the Sequential Dependence. Dt = {(xs, ys)t
s=1}

E[θ̃t | Dt] = Σt

Σ−1
0 E[θ̃0 | Dt]︸ ︷︷ ︸

̸=µ0

+
t−1

∑
s=1

xs

σ2 (ys + σ E[zs | Dt]︸ ︷︷ ︸
̸=0

) +
xt

σ2 (yt + σ E[zt | Dt]︸ ︷︷ ︸
=0

)

 ̸= E[θ∗ | Dt]

▶ ✗ Incremental RLS produces biased posterior sample!
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Deal with issues due to Sequential Dependence? Solution 1: Resampling

▶ For each step t, resample , θ̃
(t)
0 ∼ N(µ0, Σ0), z(t)s ∼ N(0, 1) for s = 1, . . . , t independently and

▶ Form a new perturbed history D̃(t)
t = {θ̃

(t)
0 , (xs, ys + σz(t)s ); s = 1, . . . , t} for each step t,

θ̃
(0)
0

x1

θ̃
(1)
0 , z(1)1

x2

θ̃
(2)
0 , z(2)1 , z(2)2

x3

. . .

. . .

. . .

xt

θ̃
(t)
0 , z(t)1 , . . . , z(t)t

xt+1

Time t = 1 Time t = 2 Time t = 3 Time t Time t + 1

▶ For each step t, re-train perturbed optimization problem from scratch, resulting θ̃t(D̃(t)
t ).

▶ ✓ Posterior sampling: θ̃t(D̃(t)
t ) ∼ θ∗ | Dt since Dt ⊥⊥ (θ̃

(t)
0 , z(t)1 , z(t)2 , . . . , z(t)t ). Break the

dependence!

▶ ✗ Computational cost growing unboundedly as data accumulated. No Incremental update.
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Deal with issues due to Sequential Dependence? Solution 2: Ensemble

Ensemble sampling (ES) [OVRRW19, LVR17]

▶ Initialize each m-th model θ̃0,m ∼ N(µ0, Σ0) independently for m ∈ {1, . . . , M}
▶ For t = 1, . . . , T do

— Decision: Sample mt ∼ unif{1, . . . , M}. Select xt = arg max
x∈A

⟨x, θ̃
t−1, mt

⟩ and observe yt

— Adaptation: ∀m ∈ [M], Incrementally update each m-th model according to

θ̃t,m = Σt

(
Σ−1

t−1 θ̃t−1,m +
yt + σzt,m

σ2 xt

)
(4)

where each zt = (zt,1, · · · , zt,M)⊤ ∼ N(0, IM) is an independent perturbation at each step t.
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Why ensemble sampling works? Intuition

θ̃
0, m1

x1

θ̃
0, m2

, z
1, m2

x2

. . .

. . .

. . .

xt

θ̃
0, mt+1

, z
1, mt+1

, . . . , z
t, mt+1

xt+1

Time t = 1 Time t = 2 Time t Time t + 1

▶ Intuition: breaking the dependence by large ensemble size
▶ If M sufficiently large, at time t + 1, ES select an index mt+1 ̸= m, ∀m ∈ {ms}t

s=1 w.h.p., then

E[θ̃t,mt+1 | Dt] = Σt

Σ−1
0 E[θ̃0,mt+1 | Dt]︸ ︷︷ ︸

=µ0

+
t

∑
s=1

xs

σ2 (ys + σ E[zs,mt+1 | Dt]︸ ︷︷ ︸
=0

)

 = E[θ∗ | Dt]

and posterior covariance also matches as Dt ⊥⊥ (θ̃0,mt+1 , (zs,mt+1 )
t
s=1)
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Online incremental optimization formulation of ensembles

▶ For each m ∈ [M], the m-th perturbed history dataset: Init D̃0,m = {θ̃0,m} and increment

D̃t,m = D̃t−1,m ∪ {xt, yt, zt,m}

▶ The m-th model
θ̃t,m = θt,m︸︷︷︸

learned model

+ θ̃0,m︸︷︷︸
prior perturbation

▶ For each m ∈ [M], the learned model θt,m is the solution of the incremental RLS updated from
θt−1,m with new data (xt, yt):

θt,m = arg min
θ

L(θ; D̃t,m) =
1

σ2 (gθ,m(xt)− yt − σzt,m)
2 + (θ − θt−1,m)

⊤Σ−1
t−1(θ − θt−1,m) (5)

▶ If gθ,m(x) = ⟨θ + θ̃0,m, x⟩ , Equation (5) reduces to Equation (4).

▶ In general, g(·) could be any function, including nonlinear mapping, e.g. neural networks.
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Limitations of Ensmeble Sampling

▶ Histogram effect: Larger ensemble size M, uniform distribution over M models U (θ̃1, . . . , θ̃M)

better approximate the true posterior distribution.

▶ Sequential dependence issue: inevitably introduced by the interleaving between incremental update
and sequential decision-making. To solve this issue, we need large ensemble size M to break the
dependence.

Statistics v.s. Computation Trade-offs
▶ Posterior approximation: Requires a huge number of ensembles (M > 100) for good approximation

and sequential decision-making. [LLZ+22, OWA+23, LXHL24]

▶ ✗ Computationally expensive: say, update > 100 neural networks for each time step.
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Calls for new algorithmic and theoretical developments

▶ Refer to [LLZ+22, LXHL24].
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