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Figure: An Agent (online decision algorithm) interacts with the environment (system).

> Adaptation: At time t, the agent extracts information from history data
Dy = (x1,y1,---,%-1,Y¢_1)- E.g., estimate model § for unknown system.

» Decision: Then, the agent selects action x; accordingly and observes the outcome y;.
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Sequential decision-making
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Figure: An Agent (online decision algorithm) interacts with the environment (system).

> Goal: Select actions (x;);>1 to maximize total expected future reward E[Y; r(y;))].

Exploration-Exploitation tradeoff. J

May require balancing long term & immediate rewards.

Sequential Decision-making under Uncertainty 4/27



A simple setup: Bernoulli bandits

o o o

d d :

(a) Action 1: 65 = 0.6 (b) Action 2: 05 =04 (c) Action 3: 65 =0.7

» 3 actions with mean rewards 6% = {6; = 0.6,6; = 0.4,0; = 0.7}, unknown to the Agent but fixed.
» Each time £, an action x; = k is selected and the observation

vt ~ Bernoulli(6} )

is revealed, resulting the reward r; = y;.
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Source of uncertainty: unknown environments and insufficient data

> 0" = {67 =0.6,05 = 04,05 = 0.7} unknown.

» The agent begin with an independent uniform prior belief
over each 0.

» The agent's beliefs in any given time period about these
mean rewards can be expressed in terms of posterior
distributions.

— Posterior « Prior x Data likelihoods
— More Data = Posterior concentrates!
— Less Data = Posterior spreads!

Epistemic Uncertainty due to insufficient data. J
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Figure: Posterior p.d.f. over mean rewards
after the agent tries actions 1 and 2 one
thousand times each, action 3 three times,
receives cumulative rewards of 600, 400, and
1.
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Why agent needs to track the degree of uncertainty - Greed is no good

action 1
action 2

25 —— action 3
» Greedy algorithm (maximize expected mean reward with /\

20
current belief) will always select action 1. /\

probabilty density

» Under current belief: Reasonable to avoid action 2, since
it is extremely unlikely 65 > 67.

» Because of high uncertainty in 0%, there is some chance

85 > 607. In the long run, the agent should try action 3. L 5z o o5 o 1

mean reward

. . . . . Figure: Posterior p.d.f. over mean rewards
Greedy algorithm fails to account for uncertainty information after the agent tries actions 1 and 2 one
J thousand times each, action 3 three times,
receives cumulative rewards of 600, 400, and
1. Ground truth
{07 =06,05 =04,05 =0.7}.

in 03, causing suboptimal decision.
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Why agent needs to track the degree of uncertainty - Thompson sampling

Algorithm: Thompson sampling (TS)

» Given prior distribution po(6*) over model 6*. Set initial
dataset Dy = @.
» Fort=1,...,T,
- Sample §; ~ p(6* | D;_1) from posterior

- Select x; = argmaxE[r(y;) | xt = x,6* =] and
xXe
observe y; and 1 = r(y;)

— Update the history dataset Dy = Dy_1 U {(xt,y:)}

V.

» TS would sample actions 1, 2, or 3, with prob. ~ 0.82, 0,
and 0.18, respectively.

» TS explores 63 to solve its uncertainty and finally

identifies the optimal action

Sequential Decision-making under Uncertainty

— action 1
— action 2
— action 3

3 %
—

probabilty density

S

Figure: Posterior p.d.f. over mean rewards
after the agent tries actions 1 and 2 one
thousand times each, action 3 three times,
receives cumulative rewards of 600, 400, and
1. Ground truth

{67 =0.6,05 =04,0; =0.7}.
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Why agent needs to track the degree of uncertainty

Definition 1 (Performance metric: Regret).

T

Regret(T) = ZilE[mgxlE[r(y) | x,6%] = r(ys)]
=

In previous bernoulli bandit example, 6] = 0.6,65 = 0.4,05 = 0.7 and

max E[r(y) | x,0*] = 63.
X

Therefore, Regret(T) = T6; — E[Y]_; r(y1)].

Sequential Decision-making under Uncertainty 9/27



Why agent needs to track the degree of uncertainty - Thompson sampling

Algorithm: Thompson sampling (TS)
» Given prior distribution po(6*) over model 6*. Set initial dataset Dy = @.
» Fort=1,...,T,

— Sample 0; ~ p(0* | D;_1) from posterior
- Select x; = argmaxE[r(y;) | xt = x,0* = §;] and observe y; and r; = r(y;)
A

xe
— Update the history dataset D; = D;_q U {(xt,y¢)}

Theorem 1 (Thompson sampling for K-armed bandit [RVRK 118]).

K actions with mean parameter {6, ...,0%}, and when played, any action yields the observation
yt ~ Bernoulli(6}) and resulting the reward ry = r(y;). The regret lower bound is Q)(v/KT). Thompson
sampling achieves near-optimal regret up to a logK factor,

Regret(T) = O(\/KTlogK).
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How to track the degree of uncertainty? Bayesian inference

» Given data Dy = {(xt,y¢),t =1,..., T}, compute the posterior of 8* via the Bayes rule

p(6” | Dr) o p(Dr | 0%)po(67)

Example: Beta-Bernoulli model Example: Linear-Gaussian model
> Prior: 0% € RX each > Prior: 8* € RY ~ po : N(po, Zo)
Ok ~ po : Beta(ay, Bx) >y = (0%, x) + w} and w; ~ N(0,0?)
> yi ~ Bernoulli(6y, ) » Gaussian Posterior 8* | Dy ~ N(ur, 1)
» Posterior over 6y | Dr still Beta with i
1 I
parameters S — <2 thxtT Jr2()1) )
[
. N t=1
("‘k + Yyl B+ Y (1 - ytﬂx,:k)
=1 =1 1< 1
% ur =Zr 7thyt+20 Ho | -
= | )
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Conjugacy allows for incremental update on Bayesian posterior

» Update X; by Sherman-Morrison formula

.
X 1xixy Ly q

4,1 A\t
X=Xz —|— —5 XX =X 11—
( -1 ! t> =1 02+x:2t71xt

> (Incrementally) Update p; := X; ¢ with

_ _ 1
e = E e + Xyt (1)
[ — —_—— (o
pt pi-1
> Compute
He = Zipt
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Research question

Fact:

Without conjugacy properties, exact Bayesian posterior inference is intractable. J
Question:
How to perform posterior sampling without using conjugacy? J
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Existing solutions and their limitations
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Sampling through optimization with perturbed history

> For a history dataset D; = {(xs,ys)!_;}, perturb with algorithmic noise to generate a
Perturbed history D; = { 8y ~ N(po,Z0) , (Xs,ys +0 25 ); zs ~ N(0,1) ,s =1,...,t}
» Randomize Least Square (RLS) via Perturbed History (PH) [OAC18, OVRRW19]
t
0 = argmmf (6;Dy) : Z Qo(xs) —ys — 025)2 + 9T2616’ 2
where gg(x) could be a generic nonlinear function.

Significance of Equation (2)
— Sampling through a purely computational perspective.
— No explicit posterior inference.

— No use of conjugacy properties.
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Understanding RLS-PH under fixed history

Justification of Equation (2): posterior sampling
If the fixed history dataset D; is generated from a Linear-Gaussian model w. prior 6* ~ N(9,%) and

go(x) = (9 + 0y, x) , then the optimal solution of Equation (2) is a posterior sample

= (6 +8) & o | D

. - 1 ¢
Or := 0+ 6y = X4 (22 (ys +0zs) Jrz 90) S.t.

—_
-

E[6; | Di] = Z¢ 72 (ys + 0 E[zs | Dy]) + Z5 [y | Dy] | = pe = E[6" | Dy,
— —_———— —_————

=0 =0

< 1 ¢ _ . _
Cov[fs | D] =Z | 5 ¥ xsE[zsz] | Di]x] +Zy Cov[fy | D] gt | Z¢ = Z¢ = Cov[6* | Dy].
(% =1 \—,I_/ \_\E_/
=~ -5,
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A hypothetical algorithm for sequential-decision making without conjugacy

Incremental RLS for linear bandit w. prior: 8* € R? ~ pg : N(po, Zo).

> Initialize prior perturbation @y ~ N(uo,Zo)
» Fort=1,...,T do

— Decision: Select x; = argmax(x, 0;_1 ) and observe y; = (6%, x;) + wj
xcA
where w; ~ N(0,0?) is the environmental noise

— Adaptation: Incrementally update model according to recursive LS

- B yr +0oz;
0p =X | £, 001 + — X

where each z; ~ N(0,1) is an independent perturbation at each step ¢.

» Starting from this page, we use boldface x; to emphasize it is a history-dependent R.V. .

> D; = {(xs,ys)!_;} is a adaptively sampled dataset.
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Does incremental RLS work for sequential-decision making?

Linear Gaussian Model (Bayes MOD, Russo and Van Roy, 2018) - n_arms: 10000 - n_features: 50

—— TS - Conjugacy
8000 —=— 1S:PMCoord_Gaussian -
7000 / > Bayesian regret (avg 200 expes)
//'/ in Linear-Gaussian bandit
6000
/_/‘/' » X Incremental RLS (Blue)
g // suffer linear regret (failure).
& 4000 / » / Thompson sampling (Black)
E - -
S oo g uses conjugacy for posterior
/ update and then generates a
2000 i sample from posterior.
Lo /_/‘/ Sublinear regret.
0
0 200 400 600 800 1000
Time period
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Why incremenal RLS does not work for sequential decision making?

Timet=1 Timet=2 Timet=3 Time ¢t Time t 41
Xl———-»X—»X3—p - —P Xt ————P Xp4]

S

Sequential Dependence due to incremental update alongside sequential decision-making.

> Posterior mean not matching due to the Sequential Dependence. D; = {(xs,ys)ézl}

t—1
- _ - X X
E[0; | Di] = Zt | ZV E[f0 | Di]+ Y, =5 (ys + 0 Elzs | Di]) + =5 (v + 0 E[z | Di]) | # E[6" | D]
———- 1 (% N—_—— (% N —
#Ho #0 =0
» X Incremental RLS produces biased posterior samplel!
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Deal with issues due to Sequential Dependence? Solution 1: Resampling

» For each step t, resample , éét) ~ N(yo,Zo),zgt) ~ N(0,1) for s =1,...,t independently and

» Form a new perturbed history f)t(t) = {é(()t), (xs,ys + Uzgt));s =1,...,t} for each step t,

Timet=1 Timet=2 Timet=23 Time ¢t Timet+1
X{——mm»Xp —p» X3 —p -+ —— P Xt ————» Xp4]

G S SIS S UL

0 r%1 s

5(0)
0

» For each step t, re-train perturbed optimization problem from scratch, resulting ét(Dt(t)).

> / Posterior sampling: ét(Dtm) ~ 0* | Dy since Dy 1L (éét),zgt),zgt),...,zgt)). Break the
dependence!
» X Computational cost growing unboundedly as data accumulated. No Incremental update.
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Deal with issues due to Sequential Dependence? Solution 2: Ensemble

Ensemble sampling (ES) [OVRRW19, LVR17]
> Initialize each m-th model 6, ~ N(po,Zo) independently for m € {1,..., M}

» Fort=1,...,T do

— Decision: Sample m; ~ unif{1,..., M}. Select x; = arg max(x, ét ) and observe y;
xeA R
— Adaptation: Vm € [M], Incrementally update each m-th model according to

~ A = +oz
Orm = Xy (Zt_119t71,m o ytgizt'mxt) (4)

where each z; = (z;1,- -+ ,z; )| ~ N(0,I) is an independent perturbation at each step t.
V.
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Why ensemble sampling works? Intuition

Timet=1 Time t =2 Time t Timet+1
X{——— X ——————p o ——————— Xt ———————— P Xty

S

7 .« .. / LA /
0, my 0, my " 1, my 0 me 1, mp t, meq

» Intuition: breaking the dependence by large ensemble size
> If M sufficiently large, at time t + 1, ES select an index m;q # m,Vm € {ms}._; w.h.p, then

]E[ét/erl | Dt] =X 201E[90’77r+1 ‘ Dt] + Z ]/s +UE[Z5 Miy1 | Dl‘D = IE[Q* | Dt]
—— = ——
=Ho =0

and posterior covariance also matches as Dy L (Ogm, .,/ (Zsm,.,)E_;)
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Online incremental optimization formulation of ensembles

> For each m € [M], the m-th perturbed history dataset: Init Dy, = {0y ,,} and increment

Dy = De—1,m U {Xt, Yt, 2t }

» The m-th model
Gt,m = Gt,m + GO,m
learned model  prior perturbation

> For each m € [M], the learned model 6; ,, is the solution of the incremental RLS updated from
01, with new data (x¢,yt):

. - 1 _
0t = argmin L(6; Dy ;) = = (So,m(xXt) =Yt — 0Zm)? + (0 =0 1) T, L (0 — 0 1,) (5)
0

> If ggm(x) = (0+ 0y, x) , Equation (5) reduces to Equation (4).
> In general, g(-) could be any function, including nonlinear mapping, e.g. neural networks.
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Limitations of Ensmeble Sampling

> Histogram effect: Larger ensemble size M, uniform distribution over M models U/ (81, ...,0x)
better approximate the true posterior distribution.

» Sequential dependence issue: inevitably introduced by the interleaving between incremental update
and sequential decision-making. To solve this issue, we need large ensemble size M to break the

dependence.

Statistics v.s. Computation Trade-offs

> Posterior approximation: Requires a huge number of ensembles (M > 100) for good approximation
and sequential decision-making. [LLZT22, OWAT23, LXHL24]

» X Computationally expensive: say, update > 100 neural networks for each time step.
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Calls for new algorithmic and theoretical developments

> Refer to [LLZ+22, LXHL24].
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